Neue CPU- und Relaistreiber-Boards

Nach­dem ich mich im ver­gan­ge­nen hal­ben oder drei­vier­tel Jahr mit dem Erwerb und Auf­bau einer neu­en CNC-Frä­se (eine Sor­otec BL1005) und der dazu­ge­hö­ri­gen Steue­rung beschäf­tigt habe, muss­te ich end­lich mal wie­der „etwas elek­tro­ni­sches“ machen. Die Frä­se läuft inzwi­schen, aber es fehlt noch drin­gend eine Umhau­sung und eine Min­der­men­gen­schmie­rung ins­be­son­de­re zum Frä­sen von Alu­mi­ni­um. Da steht noch eini­ges an Arbeit an. Aber das ist ein ganz ande­res The­ma, das ich gele­gent­lich auch noch beschrei­ben werde.

Für einen dem­nächst geplan­ten neu­en Anten­nen­tu­ner sol­len mehr als 16 bista­bi­le Relais ange­steu­ert wer­den. Das erfor­dert einen erwei­ter­ten Relais­trei­ber. Und wo wir schon dabei sind, kann auch das CPU-Board einen Update ver­tra­gen. Nötig gewe­sen wäre der aller­dings nicht.

Relais­trei­ber V1.2

Das alte Relais­trei­ber Board funk­tio­niert ein­wand­frei, hat aber nur vier high-side Trei­ber und acht low-side Trei­ber. Damit las­sen sich bei ent­spre­chen­dem Mul­ti­plex­ing bis zu 32 Relais­spu­len trei­ben. Beim Ein­satz bista­bi­ler Relais mit jeweils zwei Spu­len redu­ziert sich das dann aller­dings auf maxi­mal 16 Relais. Das reicht für einen Anten­nen­tu­ner mit acht geschal­te­ten Kon­den­sa­to­ren und acht geschal­te­ten Spu­len aus, aber sobald man auch nur die Kon­fi­gu­ra­ti­on zwi­schen L‑C und C‑L umschal­ten will, feht min­de­stens ein Relais. Daher habe ich ein neu­es Relais­trei­ber Board mit dop­pel­ter Anzahl an high-side Aus­gän­gen gebaut. Damit kön­nen nun bis zu 32 bista­bi­le Relais ange­steu­ert werden.

Durch die Aus­wahl einer vier­la­gi­gen Lei­ter­plat­te, den Ein­satz kleinst­mög­li­cher Gehäu­se­bau­for­men und Aus­nut­zung der Design-Regeln konn­ten fast alle Bau­tei­le auf einer Sei­te plat­ziert wer­den. Für Wider­stän­de und Kon­den­sa­to­ren wur­de fast durch­ge­hend die 0402 Packungs­grö­ße gewählt, ein ULN2803 low-side Trei­ber mit acht Kanä­len kommt im QFN-Gehäu­se zum Ein­satz. Kein Pro­blem bei auto­ma­ti­scher Bestückung. Wegen des Platz­ge­winns konn­te nun zusätz­lich noch ein 5 V‑Fest­span­nungs-Schalt­reg­ler ein­ge­baut wer­den. Es ist ein TI Simp­leS­wit­cher vom Typ LMR50410, der bis zu 36 V Ein­gangs­span­nung ver­trägt. Wegen der not­wen­di­gen Span­nungs­fe­stig­keit wur­den an des­sen Ein­gang etwas grö­ße­re Kon­den­sa­to­ren der Bau­form 0603 ein­ge­setzt. Die tat­säch­lich ver­wen­de­te Ein­gangs­span­nung wird 24 V nicht über­stei­gen. Daher wur­de eine SMBJ28A TVS-Schutz­di­ode ein­ge­baut, die zusam­men mit einer Siche­rung vor Span­nungs­spit­zen und Ver­po­lung schützt.

Durch den ULN2803 auf der auto­ma­tisch bestück­ten Sei­te bleibt nun auf der Gegen­sei­te genug Platz für zwei high-side Trei­ber vom Typ BTS724G, die dann aber hän­disch auf­ge­lö­tet wer­den müs­sen. Bei 50 mil Pin-pitch ist das kein Pro­blem. Außer­dem müs­sen die Prüf­pins und die Stift- und Sockel­lei­sten von Hand gelö­tet werden.

Hier nun die 3D-Ansich­ten von bei­den Sei­ten, der Schalt­plan im PDF-For­mat und die KiCad-Dateien.

Für die Spei­cher­dros­sel L33 und die Siche­rung F1 ist lei­der z.Zt. kein 3D-Modell vor­han­den, sie sind aber bestückt.

ATMEGA644PA CPU-Board V1.2

Auch das ATMEGA644PA-CPU Board V1.1 habe ich über­ar­bei­tet. Die­ses Board hat zwar auch zuver­läs­sig funk­tio­niert, aber die Bestückung von Hand ist doch müh­sam und feh­ler­an­fäl­lig. Außer­dem hat es den klei­nen Nach­teil, daß es mit einem Line­ar-Fest­span­nungs­reg­ler bestückt ist, der nur bis zu 18 V Ein­gangs­span­nung ver­trägt (abs max). Für die ursprüng­lich geplan­ten maxi­mal 12 V ist das völ­lig aus­rei­chend, aber inzwi­schen kam der Wunsch auf, auch 24 V Ein­gangs­span­nun­gen zu ver­wen­den und wenn mög­lich sogar mehr. Selbst die 12 V erzeu­gen eine unnö­ti­ge Ver­lust­lei­stung von 350 mW, wenn die CPU 50 mA Strom zieht. Das ist zwar kei­ne Lei­stung, die signi­fi­kant auf die Strom­rech­nung durch­schlägt, sich aber doch bei Dau­er­be­trieb doch auf immer­hin 3 kWh im Jahr auf­sum­miert. Das kostet bei den aktu­el­len Strom­prei­sen mehr als 1 € pro Jahr. Wer hät­te das gedacht?

Den­noch, das grö­ße­re Pro­blem ist die Erwär­mung des Boards und dadurch eine Ver­fäl­schung der Tem­pe­ra­tur­mes­sung. Es muss­te also wie beim Relais­trei­ber ein Schalt­reg­ler her. Hier fiel die Wahl auf einen ein­stell­ba­ren Schalt­reg­ler, den LMR16006YQ. Auch das ist ein Simp­leS­wit­cher von Texas Instru­ments, der im Bau­tei­le­ar­se­nal von JLCPCB als „Exten­ded Com­po­nent“ gegen einen ein­ma­li­gen Auf­preis zur Ver­fü­gung steht. Er ver­trägt sogar bis zu 60 V Ein­gangs­span­nung und kann durch exter­ne Beschal­tung mit pas­sen­den Wider­stän­den den gesam­ten Betriebs­span­nungs­be­reich des ATMEGA644PA von 1,8 V bis 5,0 V abdecken. Er lie­fert einen Aus­gangs­strom von bis zu 600 mA.

Hier die KiCad 3D-Ansicht des Boards:

der Schalt­plan als PDF-Datei:

und die KiCad Designfiles:

Das Wider­stands­netz­werk des Schalt­reg­lers ist so dimen­sio­niert, daß eine Aus­gangs­span­nung von 5 V erzeugt wird. Durch optio­na­le Bestückung eines wei­te­ren Wider­stands auf der Ober­sei­te der Pla­ti­ne, kann eine nied­ri­ge­re Aus­gangs­span­nung von bei­spiels­wei­se 3,3 V erzeugt wer­den. Es wur­de ein 18,432 MHz Quarz ein­ge­baut, der die Aus­wahl aller Stan­dard-Baud­ra­ten gestat­tet und auch eine exak­te 1ms- und 10ms-Inter­rupt-Peri­ode erzeugt. Das ist für den Erhalt von Datum und Uhr­zeit wichtig.

Betriebs­span­nun­gen und Einschränkungen

Alle ver­bau­ten Kom­po­nen­ten kön­nen mit Betriebs­span­nun­gen zwi­schen 3.0 V und 5.5 V betrie­ben wer­den. Bei Betriebs­span­nun­gen unter­halb von 3.0 V ist die Funk­ti­on des MAX14783 RS485-Trans­cei­vers nicht mehr gewähr­lei­stet. Unter­halb von 2.7 V sind auch der Tem­pe­ra­tur­sen­sor TMP275 und die Span­nungs­re­fe­renz REF5025 außer­halb ihrer Spe­zi­fi­ka­ti­on. Der Mikro­con­trol­ler kann zwi­schen 2.7 V und 5.5 V mit 10 MHz Takt­fre­quenz betrie­ben wer­den, ab 4.5 V mit bis zu 20 MHz. Sein full-swing Quarz­os­zil­la­tor arbei­tet von 2.7 V bis 5.5 V bis 20 MHz. Der ein­ge­bau­te 18,432 MHz Quarz funk­tio­niert also sowohl bei 3,3 V als auch 5.0 V nomi­na­ler Betriebs­span­nung. Unter­halb von 4,5 V muß dann aber die Takt­fre­quenz über die CLKDIV8 Fuse auf ein Ach­tel davon ein­ge­stellt wer­den. Die CPU läuft dann mit 2,304 MHz los und kann anschlie­ßend durch Schrei­ben des Clock Pre­s­ca­le Regi­sters CLKPR auf einen Tei­lungs­fak­tor von 2 ein­ge­stellt wer­den. Damit kann das Board bei 3.3 V mit 9,216 MHz betrie­ben werden.

Betriebs­span­nungATMEGA64418,432 MHz OszillatorMAX14783TMP275REF5025
1,8 V ~ 2,7 V
inter­nal osc, max 4 MHz
2,7 V ~ 3,0 V
Clk÷2
3,0 V ~ 4,5 V
Clk÷2
4,5 V ~ 5,5 V
Ein­schrän­kun­gen bei ver­schie­de­nen Betriebsspannungen

Der Con­trol­ler funk­tio­niert ab 1.8 V, dann aber nur mit maxi­mal 4 MHz Takt­fre­quenz und einer ande­ren Takt­quel­le als dem full-swing Oszil­la­tor. Das kann bei­spiels­wei­se einer der inter­nen Oszil­la­to­ren sein.

Ein­stel­len der Betriebsspannung

Die Aus­gangs­span­nung des Schalt­reg­lers wird durch das Wider­stands­netz­werk R6||R9 und R8 ein­ge­stellt. Auf dem Board ist R6 mit 56 kΩ bestückt, R8 mit 10 kΩ und R9 ist unbe­stückt. In der nach­fol­gen­den Glei­chung wer­den die par­al­lel­ge­schal­te­ten Wider­stän­de R6 und R9 als RA bezeich­net und UA ist die gewünsch­te Aus­gangs­span­nung. Dann ist RA fol­gen­der­ma­ßen zu wählen:

RA = ((UA * R8) / 0,765) – R8
oder
RA = ((UA * 10.000) / 0,765) – 10.000

Unter die­sen Bedin­gun­gen errech­net sich R9 zu:

R9 = R6 * RA / (R6 – RA)
oder
R9 = 56.000 * RA / (56.000 – RA)

Solan­ge R9 unbe­stückt bleibt, errech­net sich eine Betriebs­span­nung von 5.0 V. Für eine Betriebs­span­nung von 3.3 V muß R9 mit einem 82 kΩ Wider­stand bestückt werden.

Strom­auf­nah­me

Die Strom­auf­nah­me des gesam­ten CPU-Boards liegt bei höch­stens 50 mA. Der Schalt­reg­ler wur­de daher für etwa 100 mA aus­ge­legt, was auch noch die Ver­sor­gung eines spar­sa­men exter­nen Boards ermög­licht. Der Schalt­reg­ler kann bis zu 600 mA lie­fern. Falls deut­lich mehr Strom als 100 mA benö­tigt wird, soll­te eine wei­te­re Spei­cher­dros­sel auf L5 bestückt wer­den. Sie ist zur ein­ge­bau­ten Spei­cher­dros­sel par­al­lel­ge­schal­tet. Zur Berech­nung ihrer Induk­ti­vi­tät soll­te das Daten­blatt zu Rate gezo­gen wer­den. Eine Grö­ßen­ord­nung von 10 ~ 22 µH ist ein guter Anhalts­punkt. Der Schalt­reg­ler wird übri­gens mit 2,1 MHz getaktet.

Bat­te­rie­be­trieb

Das Board kann mit einer Stütz­bat­te­rie betrie­ben wer­den, die die Span­nungs­ver­sor­gung bei Netz­aus­fall über­nimmt. Für die­sen Fall muß R1 ent­fernt und die Dop­pel­schott­ky­di­ode D3 auf der Ober­sei­te bestückt wer­den. Die Bat­te­rie­span­nung darf nicht höher als die Ver­sor­gungs­span­nung sein. Es ist zu beach­ten, daß die Ver­sor­gungs­span­nung aller Kom­po­nen­ten in die­sem Fall um die Dioden­span­nung von 0,3 ~ 0,5 V sinkt.

Spek­trum­ana­ly­sa­tor, Teil 3

Nach­dem ich nun eini­ge Mona­te mit mei­nem neu­en Spek­trum­ana­ly­sa­tor her­um­ge­spielt habe, muß ich nun noch ein paar Ergän­zun­gen und Klar­stel­lun­gen zu den bei­den ersten Tei­len hier und hier hin­zu­fü­gen. In den ersten Mes­sun­gen habe ich z.T. ungün­sti­ge Meß­ein­stel­lun­gen gewählt und bei der Beur­tei­lung des dar­ge­stell­ten Sei­ten­band­rau­schen wahr­schein­lich zu stren­ge Kri­te­ri­en für ein Gerät die­ser Preis­klas­se angelegt.

Die Wahl der Meß­ein­stel­lun­gen ist kri­tisch, was nach­fol­gend am Bei­spiel eini­ger Mes­sun­gen an einem Clapp-Guri­ett Oszil­la­tor gezeigt wer­den soll. Er ist mit einem 18,432 MHz Quarz bestückt und schwingt auf der drit­ten Ober­wel­le bei nomi­nal 55,296 MHz. Alle Mes­sun­gen wur­den mit dem Sig­lent Spek­trum­ana­ly­sa­tor SSA3032X Plus durchgeführt.

Funk­ti­ons­wei­se des Spektrumanalysators

Zunächst muß man sich noch­mal über die Funk­ti­ons­wei­se eines Spek­trum­ana­ly­sa­tors klar wer­den. Es han­delt sich prin­zi­pi­ell um einen Über­la­ge­rungs­emp­fän­ger mit sehr breit­ban­di­gem, mög­lichst emp­find­li­chem, linea­rem und den­noch groß­si­gnal­fe­stem Ein­gang. Das sind Eigen­schaf­ten, die in Kom­bi­na­ti­on nicht leicht zu rea­li­sie­ren sind und Kom­pro­mis­se erfor­dern. Als Über­la­ge­rungs­emp­fän­ger benö­tigt der Spek­trum­ana­ly­sa­tor also einen VFO, der in einem Meß­zy­klus so gere­gelt wird, daß der Emp­fän­ger den gewähl­ten Emp­fangs­be­reich über­streicht. Das Meß­si­gnal am Ein­gang wird dann mit dem VFO-Signal gemischt, gefil­tert, gemes­sen und schließ­lich am Bild­schirm ange­zeigt. Neben dem Fre­quenz­be­reich kön­nen die Fil­ter­pa­ra­me­ter und der Meß­de­tek­tor ein­ge­stellt wer­den. Moder­ne Spek­trum­ana­ly­sa­to­ren wer­ten das ZF-Signal digi­tal mit einer FFT aus und errei­chen daher erheb­lich redu­zier­te Meß­zei­ten. Die prin­zi­pi­el­le Funk­ti­ons­wei­se unter­schei­det sich aber nicht von frü­he­ren rein ana­lo­gen Geräten.

Wahl der Band­brei­te und des Detektors

Es gibt zwei Band­brei­ten­ein­stel­lun­gen, die Reso­lu­ti­on Band­width (RBW) und die Video Band­width (VBW). Die wich­ti­ge­re davon ist die RBW, die die Durch­lass­band­brei­te des ZF-Fil­ters bestimmt. Die VBW mit­telt die detek­tier­ten Signa­le unmit­tel­bar vor der Dar­stel­lung, so daß das dar­ge­stell­te Rau­schen mini­miert wird. Das Video­fil­ter ist im auto­ma­ti­schen Modus an die Ein­stel­lung des ZF-Fil­ters gekop­pelt. In den hier gezeig­ten Mes­sun­gen wird die­ser auto­ma­ti­sche Modus ver­wen­det, VBW ist also immer gleich der RBW.

Der Spek­trum­ana­ly­sa­tor stellt die jeweils gemes­se­nen Signal­pe­gel auf sei­nem Bild­schirm auf der ver­ti­ka­len Ach­se über den auf der hori­zon­ta­len Ach­se ein­ge­stell­ten Fre­quenz­be­reich dar. Dabei ist die Anzahl der Punk­te in bei­den Rich­tun­gen begrenzt. Der SSA3032X Plus hat für die Fre­quenz­dar­stel­lung genau 751 Punk­te reser­viert. Der Rest des 1024 Pixel brei­ten Dis­plays wird zur Dar­stel­lung wei­te­rer Infor­ma­tio­nen benö­tigt. Damit reprä­sen­tiert also jeder ein­zel­ne Punkt einen Fre­quenz­be­reich der ein­ge­stell­ten Spann­brei­te divi­diert durch 751.

Pos Peak Messungen

Hier nun eine erste Bei­spiel­mes­sung des Clapp-Guri­ett Oszil­la­tors bei 55,28 MHz mit einer Spann­brei­te von 2,5 MHz und einer Auf­lö­sungs­band­brei­te von 30 kHz.

Clapp-Guriett Oszillator mit 18.432MHz Quarz, Span: 2.5MHz, RBW=VBW: 30kHz, Detector: PosPeak
Clapp-Guri­ett Oszil­la­tor mit 18.432MHz Quarz, Span: 2.5MHz, RBW=VBW: 30kHz, Detec­tor: PosPeak

Jeder dar­ge­stell­te Meß­wert ent­spricht hier also einem Inter­vall von 2,5 MHz / 751 = 3329 Hz (Span/Pixelanzahl). Der Detek­tor mißt den maxi­ma­len posi­ti­ven Pegel (Pos Peak) inner­halb die­ses Inter­valls und stellt ihn auf der y‑Achse log­arith­misch dar. Die ein­ge­stell­te Band­brei­te von 30 kHz ist deut­lich brei­ter, als das Inter­vall, so daß der Signal­pe­gel von ‑0,79 dBm zuver­läs­sig gemes­sen wird. Mar­ker 2 zeigt den Rausch­pe­gel im Abstand von 500 kHz zum Trä­ger. Rausch­pe­gel wer­den auto­ma­tisch mit der jeweils ein­ge­stell­ten Band­brei­te auf eine Band­brei­te von 1 Hz umge­rech­net. Hier wird ein Rausch­pe­gel von ‑112,14 dBm/Hz ermittelt.

Soll die Meß­kur­ve eine bes­se­re Auf­lö­sung bekom­men, z.B. weil man näher am Signal mes­sen will, dann muß die RBW ver­rin­gert wer­den. Wählt man eine RBW, die deut­lich klei­ner ist als die Brei­te des Inter­valls, dann ste­hen dem Spek­trum­ana­ly­sa­tor meh­re­re Meß­wer­te pro Inter­vall zur Ver­fü­gung, die aber letzt­lich nur durch einen Pixel auf dem Bild­schirm reprä­sen­tiert wer­den kön­nen. Da die Inter­vall­brei­te im vor­lie­gen­den Fall 3329 Hz beträgt, wäre eine RBW von 3 kHz ange­mes­sen. Damit wür­de mit einer Mes­sung prak­tisch das gesam­te dar­ge­stell­te Inter­vall erfasst. Zu Demo­zwecken soll die Band­brei­te aber jetzt auf 300 Hz ein­ge­stellt wer­den, wodurch also etwa elf Mes­sun­gen auf ein Inter­vall fal­len. Die Mes­sung lie­fert nun fol­gen­des Ergebnis:

Clapp-Guriett Oszillator mit 18.432MHz Quarz, Span: 2.5MHz, RBW=VBW: 300Hz, Detector: PosPeak
Clapp-Guri­ett Oszil­la­tor mit 18.432MHz Quarz, Span: 2.5MHz, RBW=VBW: 300Hz, Detec­tor: PosPeak

Der Pegel des Trä­gers ist mit ‑0,91 dBm gleich­ge­blie­ben (Unter­schie­de von ein oder zwei Zehn­tel dBm kann man getrost igno­rie­ren). Wegen der „Pos Peak“ Ein­stel­lung hat sich der Detek­tor von den elf im Inter­vall gemes­se­nen Wer­ten den Maxi­mal­wert aus­ge­sucht und die ande­ren zehn igno­riert. Die­ser Maxi­mal­wert unter­schei­det sich nicht von dem mit zehn­mal grö­ße­rer Band­brei­te gemes­se­nen Maxi­mal­wert aus der vori­gen Messung.

Aller­dings fällt auf, daß der Rausch­pe­gel mit ‑104,21 dBm/Hz nun um etwa 8 dBm gestie­gen ist. Wie kann das sein? Ganz ein­fach, aus den nun elf Meß­wer­ten pro Inter­vall sucht sich der Detek­tor wegen der „Pos Peak“ Ein­stel­lung nun wie­der den jeweils größ­ten aus, wäh­rend bei der vori­gen Mes­sung die­se elf Wer­te mit der einen ein­zi­gen Mes­sung grö­ße­rer Band­brei­te gemit­telt wur­den. Rau­schen ist ein sto­cha­sti­scher Pro­zess und der Pegel wird am besten durch sei­nen Mit­tel­wert reprä­sen­tiert, nicht durch den Maxi­mal­wert. Man kann hier also deut­lich erken­nen, daß eine Rausch­mes­sung mit „Pos Peak“ Ein­stel­lung bei einer Band­brei­te weit unter der Brei­te des Meß­in­ter­valls einen zu hohen Wert liefert.

Avera­ge Video Messungen

Wäh­rend die Mes­sung des Signal­pe­gels auch bei klei­ner RBW mit dem Pos Peak Detek­tor also ein plau­si­bles Ergeb­nis lie­fert, ist die Mes­sung eines Rausch­pe­gels also krass falsch. Daher wie­der­ho­len wir nun die Mes­sun­gen noch­mal mit einem ande­ren Detek­tor, näm­lich Avera­ge Video.

Clapp-Guriett Oszillator mit 18.432MHz Quarz, Span: 2.5MHz, RBW=VBW: 30kHz, Detector: Average Video
Clapp-Guri­ett Oszil­la­tor mit 18.432MHz Quarz, Span: 2.5MHz, RBW=VBW: 30kHz, Detec­tor: Avera­ge Video

Signal- und Rausch­pe­gel stim­men hier im Rah­men der Meß­ge­nau­ig­keit mit der Pos Peak Mes­sung bei glei­cher Auf­lö­sungs­band­brei­te über­ein. Das ist nicht ver­wun­der­lich, denn pro Inter­vall wird eine ein­zi­ge Mes­sung mit einer viel grö­ße­ren Band­brei­te durch­ge­führt. Ob man die­ses eine Ergeb­nis als Maxi­mal­wert oder als Durch­schnitts­wert bezeich­net, ist gleich.

Ein womög­lich uner­war­te­tes Ergeb­nis lie­fert die Mes­sung mit RBW = 300 Hz:

Clapp-Guriett Oszillator mit 18.432MHz Quarz, Span: 2.5MHz, RBW=VBW: 300Hz, Detector: Average Video
Clapp-Guri­ett Oszil­la­tor mit 18.432MHz Quarz, Span: 2.5MHz, RBW=VBW: 300Hz, Detec­tor: Avera­ge Video

Der dar­ge­stell­te Signal­pe­gel ist gera­de­zu abge­stürzt, um fast 60 dB. Das ist eine direk­te Fol­ge der Mit­te­lung über die elf Meß­wer­te. Nur einer die­ser Wer­te hat den tat­säch­li­chen Pegel von etwa ‑0.8 dBm wäh­rend die benach­bar­ten Wer­te zwi­schen ‑60 und ‑80 dBm lie­gen dürf­ten. Dar­aus errech­net der Spek­trum­ana­ly­sa­tor den kor­rek­ten Mit­tel­wert von ‑56,64 dBm, der aber mit dem tat­säch­li­chen Pegel nichts mehr zu tun hat. Die Rausch­mes­sung am Mar­ker 2 zeigt aber trotz der gerin­gen RBW wie­der den oben schon gemes­se­nen plau­si­blen Wert von ‑111 bis ‑112 dBm/Hz. Für Rausch­mes­sun­gen soll­te daher der „Avera­ge Video“ Detek­tor aus­ge­wählt werden.

Nor­mal, Sam­ple und Neg Peak Messungen

Der Voll­stän­dig­keit hal­ber sol­len hier noch die Mes­sun­gen mit ande­ren Detek­tor­ein­stel­lun­gen doku­men­tiert werden:

Der Detek­tor Sam­ple wählt genau einen Meß­wert in der Mit­te des jewei­li­gen Inter­valls aus. Da der Oszil­la­tor im Lau­fe der Mes­sun­gen aus der Mit­te des Dis­plays hin­aus­ge­wan­dert ist, wird hier der Signal­pe­gel bei 300 Hz RBW über­haupt nicht mehr ange­zeigt. Der Nor­mal Detek­tor zeigt abwech­selnd das Maxi­mum und das Mini­mum eines Inter­valls an. Damit lässt sich also schon optisch recht gut die Fluk­tua­ti­on der Meß­wer­te beur­tei­len. Neg Peak zeigt den jewei­li­gen Mini­mal­wert des Inter­valls an.

Emp­foh­le­ne Meßeinstellungen

Soll mit einer ein­zi­gen Mes­sung sowohl der Signal­pe­gel als auch der Rausch­pe­gel kor­rekt ange­zeigt wer­den, darf die ZF-Band­brei­te RBW nicht klei­ner sein, als das Meß­in­ter­vall. Signal- und Rausch­pe­gel wer­den dann weit­ge­hend unab­hän­gig von der Wahl des Detek­tors im Rah­men der Meß­ge­nau­ig­keit kor­rekt ange­zeigt. Beim Nor­mal Detek­tor ist aller­dings zu beach­ten, daß der Mar­ker mal auf dem Mini­mum, mal auf dem Maxi­mum ste­hen kann. Wenn RBW die Brei­te des Meß­in­ter­valls (deut­lich) unter­schrei­tet, dann muß der pas­sen­de Detek­tor aus­ge­wählt wer­den. Zum Mes­sen des Signal­pe­gels emp­fiehlt sich dann Pos Peak, zum Mes­sen des Rausch­pe­gels Avera­ge Video oder Sample.

Mes­sung des Seitenbandrauschens

Kann man denn nun mit einem Spek­trum­ana­ly­sa­tor das Sei­ten­band­rau­schen eines Oszil­la­tors direkt mes­sen oder ist das nicht mög­lich? Kann man wenig­stens eine qua­li­ta­ti­ve Aus­sa­ge tref­fen: schlecht, geht so bzw. gut. Das Sei­ten­band­rau­schen wird übli­cher­wei­se im Abstand von 10 kHz zum Trä­ger ange­ge­ben und auf den Pegel des Trä­gers bezo­gen. Nach dem Bei­trag „Pha­sen­rausch­mes­sun­gen mit dem Spek­trum­ana­ly­sa­tor“ von Wer­ner Schnor­ren­berg, DC4KU, hat ein guter Oszil­la­tor ein Sei­ten­band­rau­schen von ‑70 bis ‑110 dBc/Hz im Abstand von 10 kHz, sehr gute Oszil­la­to­ren auch klei­ner als ‑160 dBc/Hz. Dabei ist zu beach­ten, daß die­ser Bei­trag nun älter als 30 Jah­re ist und sich die Stan­dards inzwi­schen geän­dert haben dürf­ten. ‑100 dBc/Hz müss­te also heut­zu­ta­ge von einem guten Oszil­la­tor schon unter­schrit­ten werden.

Betrach­ten wir noch ein­mal die Mes­sung des oben schon ver­wen­de­ten Clapp-Guri­ett Oszil­la­tors, dies­mal mit RBW = 3 kHz und drei Rausch-Mar­kern im Abstand von 10 kHz, 100 kHz und 1 MHz.

Clapp-Guriett Oszillator mit 18.432MHz Quarz, Span: 2.5MHz, RBW=VBW: 3kHz, Detector: Average Video
Clapp-Guri­ett Oszil­la­tor mit 18.432MHz Quarz, Span: 2.5MHz, RBW=VBW: 3kHz, Detec­tor: Avera­ge Video

Woher kommt die­ser auf­fäl­li­ge Anstieg des Rau­schens in der Nähe des Trä­gers und der Abfall unmit­tel­bar dane­ben? Ist das das Sei­ten­band­rau­schen des gemes­se­nen Oszil­la­tors? Ganz klar nein, es ist das Sei­ten­band­rau­schen des VFOs im Spek­trum­ana­ly­sa­tor. Des­sen Rau­schen wird näm­lich mit dem Trä­ger des zu mes­sen­den Oszil­la­tors in den ZF-Band­paß gemischt. Die beid­sei­ti­gen Peaks wer­den (mut­maß­lich) von der PLL die­ses VFOs erzeugt. Die­ses Ver­hal­ten hat­te ich schon im ersten Teil doku­men­tiert, ohne mir genau über die Ursa­che bewußt zu sein.

Der Pegel des Trä­gers wird hier mit ‑1,8 dBm gemes­sen. Er ist wegen der RBW von 3 kHz bereits leicht redu­ziert. Gehen wir von einem tat­säch­li­chen Pegel von ‑0,8 dBm aus, wie oben gemes­sen, dann zeigt die­se Mes­sung Sei­ten­band­rausch­pe­gel von ‑99,7 dBc/Hz (@10 kHz), ‑95,46 dBc/Hz (@100 kHz) und ‑116,08 dBc/Hz (@1 MHz). Das Daten­blatt des SSA3032X Plus spe­zi­fi­ziert garan­tier­te (typi­sche) Wer­te von 95 (98) dBc/Hz (@10 kHz), 96 (97) dBc/Hz (@100 kHz) und 115 (117) dBc/Hz (@1 MHz). Die tat­säch­li­chen Wer­te sind frei­lich nicht bekannt, aber man kann anneh­men, daß sie nicht deut­lich bes­ser sind, denn sonst hät­te der Her­stel­ler die bes­se­ren Wer­te spe­zi­fi­ziert. Eher sind die spe­zi­fi­zier­ten Wer­te geschönt.

Nach den Standards von 1990, die DC4KU im oben erwähnten Beitrag dokumentiert, erreichen gute Spektrumanalysatoren ein Seitenbandrauschen von besser als -80 dBc/Hz im Abstand von 10 kHz, sehr gute Geräte besser als -110 dBc/Hz. Preist man den technischen Fortschritt der letzten 30 Jahre ein, ist der SSA3032X Plus mit seinen -95 dBc/Hz nach heutigen Standards wohl als "gut" einzuordnen, aber eher nicht als "sehr gut".

Die gemes­se­nen Wer­te lie­gen nahe an den spe­zi­fi­zier­ten typi­schen Wer­ten. Damit kann man den wesent­li­chen Teil des hier gemes­se­nen Sei­ten­band­rau­schens dem VFO des Spek­trum­ana­ly­sa­tors zuord­nen. Abwei­chun­gen von 1 dB wür­de ich als Meß­un­ge­nau­ig­keit defi­nie­ren. Das Sei­ten­band­rau­schen des gemes­se­nen Oszil­la­tors ist also sicher nied­ri­ger, als die hier gemes­se­nen Wer­te, wie nied­rig genau, weiß man nicht. Die oben genann­te Anfor­de­rung von höch­stens ‑100 dBc/Hz im 10 kHz Abstand für einen guten Oszil­la­tor ist also erfüllt. Damit ist man aber an der Meß­gren­ze des Spek­trum­ana­ly­sa­tors ange­kom­men. Für genaue­re Mes­sun­gen benö­tigt man ande­re Meßverfahren.

Die Pro­ble­ma­tik bei die­ser direk­ten Mes­sung ist der Dyna­mik­be­reich des Signals. Ein Spek­trum­ana­ly­sa­tor benö­tigt einen groß­si­gnal­fe­sten Ein­gang mit sehr nied­ri­gem Eigen­rau­schen. Er muß in dem gezeig­ten Fall ein ‑100 dBm/Hz Rausch­si­gnal von einem unmit­tel­bar benach­bar­ten 0 dBm Signal (1 mW) unter­schei­den kön­nen. Das sind zehn Grö­ßen­ord­nun­gen, also ein Fak­tor von zehn Milliarden.

Hier noch­mal die Links zu Teil 1 und Teil 2.

Spek­trum­ana­ly­sa­tor, Teil 2

Nach­dem im ersten Teil eini­ge spek­tra­le Mes­sun­gen des Sig­lent SSA3032X Plus im Ver­gleich zum Rigol DSA815-TG gezeigt wur­den, sol­len in die­sem Teil nun Ver­gleichs­mes­sun­gen mit den ein­ge­bau­ten Track­ing­ge­ne­ra­to­ren (TG) durch­ge­führt werden.

Die Funk­ti­on eines Track­ing­ge­ne­ra­tors ist schnell erklärt: er gene­riert ein Signal mit genau der Fre­quenz, die der Spek­trum­ana­ly­sa­tor (SA) zu die­sem Zeit­punkt gera­de mißt. Damit ist sei­ne Funk­ti­on die eines klas­si­schen Wob­bel­sen­ders, nur daß eben der Detek­tor in Form des SA bereits ein­ge­baut ist. Ein SA mit TG gestat­tet damit ohne wei­te­re Hard­ware Trans­mis­si­ons­mes­sun­gen (s21), mit einem exter­nen Richt­kopp­ler aber auch Refle­xi­ons­mes­sun­gen (s11). Anders als mit einem vek­to­ri­el­len Netz­werk­ana­ly­sa­tor (VNA) geht bei­des aber nur ska­lar, nicht vek­to­ri­ell. Pha­sen­ver­schie­bun­gen kann ein SA mit TG also nicht erkennen.

Trans­mis­si­ons­mes­sun­gen

Bei allen Durch­gangs­mes­sun­gen wird zunächst eine Refe­renz­mes­sung durch­ge­führt, indem der TG-Aus­gang and den SA-Ein­gang mit einem mög­lichst kur­zen und hoch­wer­ti­gen Kabel kurz­ge­schlos­sen wird. Die­ses Meß­er­geb­nis wird als Refe­renz gespei­chert und alle wei­te­ren Mes­sun­gen dar­auf bezogen.

Iso­la­ti­ons­mes­sung

Zunächst muß man fest­stel­len, wel­che Dyna­mik man im Meß­be­reich über­haupt erwar­ten kann. Es ist unver­meid­lich, daß ein gerin­ger Teil des TG-Aus­gangs­si­gnals bereits intern in den hoch­emp­find­li­chen Ein­gang des SA leckt. Egal was man anschlie­ßend außen anschließt, die­ses Leck kann man nicht mehr besei­ti­gen. Es bestimmt also den mini­ma­len Pegel, den man mes­sen kann.

Für die Iso­la­ti­ons­mes­sun­gen wer­den bei­de Buch­sen offen gelassen.

Bes­se­re Iso­la­ti­ons­wer­te als die hier gemes­se­nen grob ‑35 bis ‑45 dB beim DSA815 und ‑45 bis ‑55 dB beim SSA3032X Plus wird man also beim Anschluß eines Test­ob­jekts nicht erwar­ten können.

Mes­sung von Kabeldämpfungen

Rea­le Kabel sind bekannt­lich nicht ver­lust­frei, Koaxi­al­ka­bel schon gar­nicht. Daher soll jetzt als ein­fach­ste Übung die Dämp­fung eines 20 m lan­gen RG-58 und eines 25 m lan­gen RG-174 Kabels über der Fre­quenz gemes­sen wer­den. Hier die ver­wen­de­ten Testobjekte:

…und hier die Meß­er­geb­nis­se der Durchgangsmessungen:

Die Mes­sun­gen zei­gen fre­quenz­ab­hän­gi­ge Wel­lig­kei­ten, die auf Feh­ler in der Anpas­sung zurück­zu­füh­ren sind. Sie sind ver­mut­lich auf Abwei­chun­gen des Wel­len­wi­der­stands des Kabels zu den 50 Ohm der Quel­le und des Meß­ein­gangs zurückzuführen.

Die gemes­se­nen Dämp­fun­gen sind im wesent­li­chen kon­si­stent. Klei­ne­re Abwei­chun­gen erge­ben sich, wenn der Mar­ker gera­de auf einem Berg oder Tal der Wel­lig­keit steht. Beim RG-174 Kabel kom­men bei­de Meß­in­stru­men­te bei den hohen Fre­quen­zen an ihre ein­gangs gemes­se­ne Iso­la­ti­ons­gren­ze. Die hier gefun­de­nen Dämp­fungs­wer­te stim­men im Rah­men der Meß­ge­nau­ig­keit mit den publi­zier­ten Daten überein.

Mes­sun­gen pas­si­ver Filter

In der Bastel­ki­ste fan­den sich eini­ge pas­si­ve Fil­ter, die vor vie­len Jah­ren mit dem Ansoft Desi­gner SV ent­wor­fen und auf FR‑4 Lei­ter­plat­ten­ma­te­ri­al gefräst wur­den. Als Bei­spie­le wur­de ein 435 MHz und ein 850 MHz Band­pass-Fil­ter aus­ge­wählt. Das 435 MHz Fil­ter ist ein Strei­fen­lei­tungs­fil­ter und das 850 MHz Fil­ter ist ein LC-Fil­ter, bei dem jedoch die Induk­ti­vi­tä­ten und ein Teil der Kapa­zi­tä­ten als Lei­ter­bahn­ele­men­te aus­ge­führt sind. Hier sind Fotos der ver­wen­de­ten Filter:

Eine Sei­te der Fil­ter ist jeweils eine durch­ge­hen­de Mas­se­flä­che und die ande­re Sei­te stellt die Fil­ter­struk­tur dar. Das Inter­di­gi­tal-Fil­ter besteht nur aus vier Micro­strip-Lei­tun­gen, deren Dimen­sio­nen und Abstand vom Fil­ter-Design­pro­gramm errech­net werden.

Das LC-Fil­ter besteht aus drei kapa­zi­tiv gekop­pel­ten Par­al­lel­schwing­krei­sen. Die run­den Kup­fer­flä­chen sind Kon­den­sa­to­ren mit etwa 7 pF zur gegen­über­lie­gen­den Mas­se­flä­che und die klei­nen etwa 10 mm lan­gen Lei­ter­bah­nen sind dazu par­al­lel­ge­schal­te­te Induk­ti­vi­tä­ten von jeweils etwa 5 nH. Sie sind am ande­ren Ende zur Mas­se­flä­che durch­kon­tak­tiert. Als Kop­pel­kon­den­sa­to­ren sind 0.75 pF Kera­mik­kon­den­sa­to­ren der Grö­ße 0805 ein­ge­setzt. War­um die gan­ze Fil­ter­struk­tur nicht um 180° gedreht ist, damit die Lei­tungs­län­gen kür­zer wer­den, ist mir übri­gens heu­te auch nicht mehr klar.

Die Ansoft Simu­la­ti­on ergibt fol­gen­de Durchgangscharakteristiken:

Bei dem 435 MHz Micro­strip-Fil­ter erkennt man deut­lich deren prin­zi­pi­el­le Eigen­schaf­ten: sie las­sen nicht nur die Grund­wel­le durch, son­dern auch deren Ober­wel­len. Die Schmal­band­mes­sun­gen zei­gen den 10 dB Durch­gangs­be­reich des Fil­ters, der bei etwa 50 MHz Band­brei­te liegt. Es gibt klei­ne Unter­schie­de in den Mes­sun­gen, die man nicht über­be­wer­ten soll­te. Eine erneu­te Mes­sung wird bei jedem der Gerä­te wie­der Abwei­chun­gen zei­gen. Bei­de Schmal­band­mes­sun­gen zei­gen eine gute Über­ein­stim­mung der Durch­lass­kur­ve mit der Simu­la­ti­on. Auch die Mit­ten­fre­quenz stimmt recht gut. Die Dämp­fung des rea­len Fil­ters ist gering­fü­gig höher als simuliert.

Das 850 MHz LC-Fil­ter hat dage­gen nur einen ein­zi­gen aus­ge­präg­ten Durch­lass­be­reich, näm­lich um 800 MHz her­um. Er liegt damit also etwa 50 MHz unter dem simu­lier­ten Durch­lass­be­reich. Das ist sicher­lich auf Unge­nau­ig­kei­ten beim Frä­sen der Lei­ter­plat­te oder Abwei­chun­gen von der tat­säch­li­chen Dielek­tri­zi­täts­kon­stan­te zurück­zu­füh­ren und spielt hier beim Ver­gleich der bei­den Spek­trum­ana­ly­sa­to­ren kei­ne Rol­le. Bei­de Gerä­te sehen die Dämp­fung im Durch­lass­be­reich über­ein­stim­mend bei etwas über 7 dB und die 3 dB Band­brei­te bei etwa 60 MHz.

23 cm LNA mit MMIC

Zum Abschluß der Trans­mis­si­ons­mes­sun­gen soll noch ein akti­ver Vor­ver­stär­ker gezeigt wer­den, ein LNA mit einem „Mono­li­thic Micro­wa­ve IC“, MMIC. Der hier ein­ge­setz­te Typ ist ein MGA-62563 von Ava­go. Er soll laut Daten­blatt 17 dB Gewinn im 23 cm Band erzie­len. Auch hier ist wie­der ein Micro­strip-Fil­ter vor­ge­schal­tet, das eini­ge dB Ver­lust erzeugt, so daß am Ende ein Gewinn von etwa 10 dB zu erwar­ten ist. Hier zwei Fotos des Prototypen:

Die Ansoft Simu­la­ti­on lässt fol­gen­de Durch­gangs­cha­rak­te­ri­stik erwarten:

23 cm LNA mit MGA-62563, simulierte Durchgangscharakteristik
23 cm LNA mit MGA-62563, simu­lier­te Durchgangscharakteristik

Tat­säch­lich gemes­sen wur­de fol­gen­de Charakteristik:

Bei­de Instru­men­te zei­gen eine Ver­stär­kung von knapp 11 dB im 23 cm Band. Unter Berück­sich­ti­gung der Ver­lu­ste des Ein­gangs­fil­ters deckt sich das mit der laut Daten­blatt zu erwar­ten­den Ver­stär­kung von 17 dB. Die 10 dB Band­brei­te beträgt über­ein­stim­mend etwa 270 MHz. Wegen des erwei­ter­ten Fre­quenz­be­reichs sieht der Sig­lent SSA3032X-Plus auch den Durch­lass­be­reich der ersten Ober­wel­le bei 2.6 GHz. Auch für die­sen Bereich wur­de eine Schmal­band­mes­sung durch­ge­führt, die immer­hin noch eine Dämp­fung um 10 dB zeigt. Auch hier deu­tet die Wel­lig­keit im Durch­lass­be­reich wie­der auf Abwei­chun­gen der Anpas­sung hin.

Refle­xi­ons­mes­sun­gen

Mit Hil­fe eines exter­nen Refle­xi­ons­meß­kop­fes kann man mit einem Track­ing­ge­ne­ra­tor auch Ein­port-Mes­sun­gen, z.B. an Anten­nen durch­füh­ren. Der Track­ing­ge­ne­ra­tor speist dabei den Ein­gang des Meß­kop­fes und das Meß­ob­jekt wird an den Aus­gang ange­schlos­sen. Der Spek­trum­ana­ly­sa­tor mißt die reflek­tier­te Lei­stung. Das ent­spricht einer s11-Mes­sung, auch hier aller­dings wie­der nur skalar.

Vor der eigent­li­chen Mes­sung muß eine Refe­renz­mes­sung mit offe­nem oder kurz­ge­schlos­se­nem Aus­gang durch­ge­führt wer­den. Die Meß­kur­ve wird als Refe­renz­si­gnal gespei­chert und alle wei­te­ren Mes­sun­gen bezie­hen sich dann auf die­se Referenz.

Hier zunächst Fotos des Meß­kop­fes und des Meßobjekts:

Baofeng Wen­del­an­ten­ne

Die Spe­zi­fi­ka­ti­on der Meß­kop­fes ist auf 0,1 .. 500 MHz begrenzt, daher bie­tet sich die Mes­sung einer Wen­del­an­ten­ne an. Sie wird im Zim­mer mit einem klei­nen Schraub­stock fixiert, damit die Mes­sun­gen halb­wegs repro­du­zier­bar sind. Das funk­tio­nier lei­der nur annä­hernd, denn die Bewe­gung einer Per­son im Raum oder schon eine Hand­be­we­gung führt zu Ände­run­gen am Meß­er­geb­nis. Daher soll­ten die fol­gen­den Mes­sun­gen mit der berühm­ten Pri­se Salz betrach­tet werden.

Die Meß­er­geb­nis­se:

Die Mes­sun­gen zei­gen jeweils die fre­quenz­ab­hän­gig reflek­tier­te Ener­gie an. Bei den Fre­quen­zen, an denen die Anten­ne Ener­gie abstrahlt, erreicht die reflek­tier­te Ener­gie ein Mini­mum. Ist die reflek­tier­te Ener­gie hoch, kann sie nicht abge­strahlt wor­den sein. Bei die­sen Fre­quen­zen ist die Anten­ne also ziem­lich wirkungslos.

Auf den Breit­band­mes­sun­gen erkennt man Reso­nan­zen bei etwa 150 MHz, 380 MHz und 420 MHz. Bei den wei­te­ren Mes­sun­gen sind jeweils noch­mal die Berei­che um 150 MHz und um 400 MHz her­aus­ge­zoomt. Bei 150 MHz ist eine Rück­fluß­dämp­fung zwi­schen 8 und 11 dB zu sehen. Die Unter­schie­de sol­len aus den oben genann­ten Grün­den nicht bewer­tet wer­den. Eine Rück­fluß­dämp­fung von 10 dB bedeu­tet, daß von der ein­ge­spei­sten Lei­stung 10% zurück­flie­ßen, also 90% abge­strahlt wur­den. Das ist nicht ganz schlecht. Bei 380 und 420 MHz mes­sen bei­de Gerä­te eine Rück­fluß­dämp­fung von mehr als 30 dB, es wird also 99,9% der ein­ge­spei­sten Lei­stung abge­strahlt. Das ist gut.

Bei Refle­xi­ons­mes­sun­gen ist es ganz prak­tisch, wenn der SA nicht nur posi­ti­ve, son­dern auch nega­ti­ve Peaks fin­den und in der Tabel­le dar­stel­len kann. Im Gegen­satz zum DSA815-TG kann der SSA3032X-Plus das.

Zusam­men­fas­sung

Bei­de Spek­trum­ana­ly­sa­to­ren haben einen ein­ge­bau­ten Track­ing­ge­ne­ra­tor, der jeweils in der Stan­dard­aus­füh­rung bereits ohne sepa­ra­te Lizenz frei­ge­schal­tet ist. Er ist ein sehr nütz­li­ches Werk­zeug, das bis zu einem gewis­sen Gra­de einen vek­to­ri­el­len Netz­werk­ana­ly­sa­tor erset­zen kann.

Die Iso­la­ti­on des Track­ing­ge­ne­ra­tors ist beim SSA3032X-Plus etwa 10 dB bes­ser als beim DSA815-TG. Das gestat­tet genaue­re Mes­sun­gen im Sperr­be­reich von Fil­tern. Der grö­ße­re Bild­schirm des Sig­lent erlaubt es, mehr Infor­ma­ti­on dar­zu­stel­len, ohne zu gro­ße Abstri­che bei der Anzei­ge der Meß­kur­ve zu machen.

Der SSA3032X-Plus ist bei den Mes­sun­gen gene­rell deut­lich schnel­ler, als der DSA815 und die Bedie­nung vom PC über das Web-Inter­face ist ein­fach Stand der Tech­nik. Mit einem Klick wird ein Screen­shot direkt auf die Fest­plat­te gespei­chert, wo man beim DSA815 erst umständ­lich mit einem USB-Stick han­tie­ren muß. Dabei dau­ert das Abspei­chern eines klei­nen PNG-Files dann auch noch eine gefühl­te Ewig­keit. An der Bedie­nung merkt man die zehn Jah­re Entwicklungsfortschritt.

Daß der SSA3032X-Plus im Gegen­satz zum DSA815-TG einen deut­lich erwei­ter­ten Fre­quenz­be­reich hat, soll hier nicht bewer­tet wer­den. Es gibt zu höhe­ren Kosten auch von Rigol eine 3.2 GHz Vari­an­te, den DSA832E-TG, und von Sig­lent eine preis­gün­sti­ge­re 1,5 GHz Vari­an­te, den SSA3015X Plus. Die gerin­ge­re RBW und das nied­ri­ge­re Pha­sen­rau­schen des SSA3032X-Plus kön­nen die hier gezeig­ten Mes­sun­gen mit dem Track­ing­ge­ne­ra­tor nicht aus­nut­zen. Dazu wären wei­te­re Schmal­band­mes­sun­gen, z.B. von Quar­zen, viel­leicht ganz hilf­reich. Für sol­che Mes­sun­gen ver­wen­de ich aller­dings den VNA und pla­ne auch nicht, das zukünf­tig mit dem Spek­trum­ana­ly­sa­tor zu machen.

Hier die Links zu Teil 1 und Teil 3.

Ein neu­er Spek­trum­ana­ly­sa­tor muß her!

Vor­über­le­gun­gen

Die Histo­rie

Vor knapp zehn Jah­ren habe ich mir mei­nen ersten Spek­trum­ana­ly­sa­tor (SA) gekauft, einen DSA815-TG der Fir­ma Rigol. Es ist ein für Ama­teur­zwecke recht brauch­ba­res Gerät, das damals knapp 1500 Euro geko­stet hat und heu­te immer noch für gut 1000 Euro ver­füg­bar ist. Er hat aller­dings sei­ne Schwä­chen. Die klein­ste Auf­lö­sungs­band­brei­te (RBW) war sei­ner­zeit 100 Hz, konn­te durch einen Soft­ware­up­date aber auf 10 Hz redu­ziert wer­den. Das ist gar­nicht so schlecht, damit kann man arbei­ten. Als stö­rend erweist sich aber das rela­tiv hohe Pha­sen­rau­schen ins­be­son­de­re beim Mes­sen von Oszil­la­to­ren. Das Daten­blatt gibt für einen Abstand von 10 kHz einen Wert <-80dBc/Hz an. Es wird schlech­ter, je näher man an den Trä­ger kommt. Das ist, wenn über­haupt, nicht viel bes­ser als das Pha­sen­rau­schen eines selbst­ge­bau­ten Oszil­la­tors. Den kann man daher nicht qua­li­fi­ziert mes­sen, denn man kann das Pha­sen­rau­schen des Oszil­la­tors nicht von dem des SA unterscheiden.

Ein wei­te­rer klei­ner Nach­teil ist die Maxi­mal­fre­quenz von 1,5 GHz. Das ist natür­lich für alle Kurz­wel­len­bän­der inklu­si­ve 2 m und 70 cm völ­lig aus­rei­chend. Auf den ersten Blick reicht es auch für 23 cm, aber es kann ein Nach­teil sein, daß man da nicht ein­mal die zwei­te Ober­wel­le geschwei­ge denn die oft wich­ti­ge­re drit­te Ober­wel­le beob­ach­ten kann. Der Track­ing­ge­ne­ra­tor ist ein hilf­rei­ches Werk­zeug, um s21-Para­me­ter und mit einem exter­nen Richt­kopp­ler auch s11-Para­me­ter zu mes­sen, wenn auch bei­de nur ska­lar und nicht vek­to­ri­ell. Will man bei­spiels­wei­se ein Band­pass­fil­ter für das 23 cm Band mes­sen, dann ist es sehr hilf­reich, deut­lich über die Band­gren­zen hin­aus­zu­ge­hen und nicht gleich am Band­ende schon blind zu sein.

Der heu­ti­ge Stand der Technik

Kurz und gut, ich brau­che einen neu­en Spek­trum­ana­ly­sa­tor! Für Ama­teur­zwecke und Ama­teur­bud­gets kom­men nur Gerä­te chi­ne­si­scher Pro­ve­ni­enz in Fra­ge, dar­un­ter beson­ders die von Rigol und Sig­lent. Bei bei­den Her­stel­lern kann man aus einem brei­ten Preis- und Lei­stungs­spek­trum aus­wäh­len. Die erste Fra­ge, die jeder für sich sel­ber klä­ren muß, ist die, ob ein vek­to­ri­el­ler Netz­werk­ana­ly­sa­tor (VNA) ein­ge­baut sein soll. Einen Track­ing­ge­ne­ra­tor haben die mei­sten Gerä­te sowie­so ein­ge­baut und auch frei­ge­schal­tet. Da ist es zum VNA nicht mehr weit, aber ob der Auf­preis gerecht­fer­tigt ist, muß jeder sel­ber entscheiden.

Da ich bereits einen bis 1,3 GHz gut funk­tio­nie­ren­den VNA (von DG8SAQ) habe und mich die tech­ni­schen Daten der SA mit VNA nicht wirk­lich über­zeugt haben, habe ich mich auch wegen des Auf­prei­ses von etwa 600 Euro gegen den eige­bau­ten VNA ent­schie­den. Für etwa 660 Euro gibt es den LibreV­NA, der immer­hin bis 6 GHz nutz­bar ist. Letzt­lich habe ich mich daher für den Sig­lent SSA3032X Plus ohne ein­ge­bau­ten VNA ent­schie­den, der gera­de so in das ver­füg­ba­re Bud­get gepasst und mei­ne Anfor­de­run­gen erfüllt hat.

Daves Vor­ar­beit

EEV­blog-Dave hat in einem sei­ner sehens­wer­ten und unnach­ahm­li­chen Vide­os den Sig­lent SSA3021X mit dem Rigol DSA815 (Video #891) ver­gli­chen und in einem wei­te­ren Video (#892) auch den SSA3021X auf­ge­schraubt. Der Sig­lent SSA3021X ist funk­tio­nal weit­ge­hend iden­tisch mit dem SSA3032X Plus. Er ist aller­dings auf 2.1 GHz limi­tiert, hat kein Web­in­ter­face und kei­nen Touchscreen.

Ver­gleichs­mes­sun­gen des SSA3032X Plus gegen­über dem DSA815-TG

In die­sem Bei­trag wer­de ich eini­ge Ver­gleichs­mes­sun­gen der bei­den genann­ten Gerä­te durch­füh­ren und die jewei­li­gen Meß­er­geb­nis­se per Screen­shot dar­stel­len. Als Meß­ob­jek­te wur­de der Ama­teur­funk­trans­cei­ver IC-7300 und ver­schie­de­ne Test­schal­tun­gen ver­wen­det, die sich noch in der Bastel­ki­ste fan­den. Letz­te­re erhe­ben kei­ner­lei Anspruch auf tech­ni­sche Mei­ster­lei­stun­gen. Ganz im Gegen­teil, es sind zum Teil gefrä­ste Pro­to­ty­pen mit unter­durch­schnitt­li­cher Per­for­mance. Gera­de des­halb eig­nen sie sich aber gut, um als Ver­gleichs­ob­jek­te zu dienen.

Damit die­ser Arti­kel nicht über­la­den wird, ver­schie­be ich die ursprüng­lich geplan­ten Refle­xi­ons- und Trans­mis­si­ons­mes­sun­gen mit dem jeweils ein­ge­bau­ten Track­ing­ge­ne­ra­tor auf einen zwei­ten Teil. Hier wer­den also nur Spek­tren gemessen.

Rausch­pe­gel bei offe­nem Eingang

Genau wie Dave in sei­nem Video, schlie­ße ich erst mal gar­nichts an. Hier ist also das dar­ge­stell­te Rau­schen bei offe­nem Ein­gang, jeweils für RBW=VBW=1MHz (gelb), 100 kHz (rot) und 10 kHz (blau).

DS815-TG, Quelle: keine, Center: 750 MHz, Span: 1500 MHz, RBW=VBW: 1000/100/10 kHz, Attn: 0dB, PA ausgeschaltet
DS815-TG, Quel­le: kei­ne, Cen­ter: 750 MHz, Span: 1500 MHz, RBW=VBW: 1000÷100÷10 kHz, Attn: 0dB, PA ausgeschaltet
SSA3032X-Plus, Quelle: keine, Center: 750 MHz, Span: 1500 MHz, RBW=VBW: 1000/100/10 kHz, Attn: 0dB, PA ausgeschaltet
SSA3032X-Plus, Quel­le: kei­ne, Cen­ter: 750 MHz, Span: 1500 MHz, RBW=VBW: 1000÷100÷10 kHz, Attn: 0dB, PA ausgeschaltet

Dave spricht beim Rigol von ‑65 dBm, ‑75 dBm und ‑85 dBm und beim Sig­lent von ‑85 dBm, ‑90 dBm und ‑100 dBm (@ RBW=1 MHz, 100 kHz und 10 kHz), zumin­dest am Anfang des jewei­li­gen Fre­quenz­be­rei­ches. Das kann ich für den Rigol bestä­ti­gen, aber nicht ganz für den Sig­lent. Da mes­se ich jeweils etwa 2 bis 5 dB schlech­te­re Wer­te. Wie auch Dave schon fest­stellt, ist der Fre­quenz­gang beim Sig­lent glat­ter als beim Rigol.

Die näch­sten bei­den Screen­shots zei­gen die­sel­ben Mes­sun­gen mit ein­ge­schal­te­tem Vor­ver­stär­ker (pre­am­pli­fier, PA).

DS815-TG, Quelle: keine, Center: 750 MHz, Span: 1500 MHz, RBW=VBW: 1000/100/10 kHz, Attn: 0dB, PA eingeschaltet
DS815-TG, Quel­le: kei­ne, Cen­ter: 750 MHz, Span: 1500 MHz, RBW=VBW: 1000÷100÷10 kHz, Attn: 0dB, PA eingeschaltet
SSA3032X-Plus, Quelle: keine, Center: 750 MHz, Span: 1500 MHz, RBW=VBW: 1000/100/10 kHz, Attn: 0dB, PA eingeschaltet
SSA3032X-Plus, Quel­le: kei­ne, Cen­ter: 750 MHz, Span: 1500 MHz, RBW=VBW: 1000÷100÷10 kHz, Attn: 0dB, PA eingeschaltet

Hier bestä­ti­gen sich die von Dave gemes­se­nen Wer­te zumin­dest annä­hernd: ‑90 dBm, ‑100 dBm und ‑110 dBm beim Rigol und ‑102 dBm, ‑108 dBm und ‑120 dBm beim Sig­lent. Bei den ‑120 dBm muß ich aber schon bei­de Augen zudrücken.

Den­noch ist der Sig­lent sowohl mit als auch ohne PA 10 bis 15 dB bes­ser. Und nicht ver­ges­sen, Dave hat den SSA3021X gemes­sen und nicht den SSA3032X-Plus.

Spek­trum einer DDS mit AD9834

Ein klei­ner Ver­suchs­auf­bau mit einer AD9834 DDS Schal­tung (10-bit DAC) wird mit einem 75 MHz Quarz­os­zil­la­tor außer­halb sei­ner Spe­zi­fi­ka­ti­on betrie­ben, die für die gewähl­te Vari­an­te AD9834BRU eigent­lich nur 50 MHz zulässt. Die Aus­gangs­fre­quenz ist auf 10,7 MHz ein­ge­stellt. Das Tief­pass­fil­ter am Aus­gang ist nicht opti­miert, wie die Breit­band Spek­tral­ana­ly­se zeigt. Bei­de Gerä­te kön­nen eine Tabel­le der gemes­se­nen Peaks anzeigen:

DS815-TG, Quelle: AD9834, Center: 50 MHz, Span: 100 MHz, RBW: 10 kHz, VBW: 10 kHz mit Peak Tabelle
DS815-TG, Quel­le: AD9834, Cen­ter: 50 MHz, Span: 100 MHz, RBW: 10 kHz, VBW: 10 kHz mit Peak Tabelle

SSA3032X-Plus, Quelle: AD9834, Center: 50 MHz, Span: 100 MHz, RBW: 10 kHz, VBW: 10 kHz mit Peak Tabelle
SSA3032X-Plus, Quel­le: AD9834, Cen­ter: 50 MHz, Span: 100 MHz, RBW: 10 kHz, VBW: 10 kHz mit Peak Tabelle

Man erkennt die DDS-Takt­fre­quenz von 75 MHz, die ein­ge­stell­te Aus­gangs­fre­quenz von 10,7 MHz, die jewei­li­gen Spie­gel­fre­quen­zen bei 75 MHz +/- 10,7 MHz.

Nach­fol­gend soll nur das Spek­trum um 10,7 MHz mit ver­schie­de­nen Band- und Spann­brei­ten unter­sucht wer­den. Begin­nen wir bei einer Spann­brei­te von 1 MHz und einer RBW=VBW von 30 Hz:

DS815-TG, Quelle: AD9834, Center: 10.7 MHz, Span: 1 MHz, RBW: 30 Hz, VBW: 30 Hz
DS815-TG, Quel­le: AD9834, Cen­ter: 10.7 MHz, Span: 1 MHz, RBW: 30 Hz, VBW: 30 Hz

SSA3032X-Plus, Quelle: AD9834, Center: 10.7 MHz, Span: 1 MHz, RBW: 30 Hz, VBW: 30 Hz
SSA3032X-Plus, Quel­le: AD9834, Cen­ter: 10.7 MHz, Span: 1 MHz, RBW: 30 Hz, VBW: 30 Hz

Bei­de Gerä­te sehen den Trä­ger bei 10,7 MHz und etwa ‑9,5 dBm. Die gerin­gen Abwei­chun­gen sind irrele­vant und sie ändern sich bei jedem der Gerä­te mit jedem Durch­gang. Bei­de Gerä­te sehen auch die Spu­ren bei +/- 400 kHz bei knapp ‑90 dBm.

Eine wei­te­re Spur bei 10,6 MHz sieht aber nur der Rigol deut­lich, beim Sig­lent ver­schwin­det sie im Rau­schen. Außer­dem steigt das Rau­schen beim Sig­lent stär­ker an, als beim Rigol, je näher man dem Trä­ger kommt. Bei ‑80 dBm erreicht es ein Maxi­mum und sinkt in unmit­tel­ba­rer Nähe zum Trä­ger wie­der auf etwa ‑90 dBm ab. Die­ses Ver­hal­ten wur­de vom Her­stel­ler Sig­lent auf Nach­fra­ge bestä­tigt. Es ist auch nicht auf die­se Ein­stel­lun­gen beschränkt, son­dern es tritt tech­no­lo­gie­be­dingt auch bei ande­ren Fre­quen­zen auf. Das ist ein ech­ter Wehr­muts­trop­fen und ich war kurz davor, das Gerät zurück­zu­ge­ben. Daß ich es nicht getan habe, liegt im wesent­li­chen dar­an, daß ich für ein ähn­lich aus­ge­stat­te­tes Gerät von Rigol noch­mal 1k€ hät­te drauf­le­gen müs­sen. Man wird also wohl oder übel in die­ser Preis­klas­se doch ein paar Abstri­che machen müssen.

Der Rigol zeigt das Ver­hal­ten, das man erwar­tet: das Pha­sen­rau­schen steigt mit der Nähe zum Träger.

Hier noch die Sig­lent-Mes­sung mit einer Peak-Tabelle:

SSA3032X-Plus, Quelle: AD9834, Center: 10.7 MHz, Span: 1 MHz, RBW: 30 Hz, VBW: 30 Hz mit Peak Tabelle
SSA3032X-Plus, Quel­le: AD9834, Cen­ter: 10.7 MHz, Span: 1 MHz, RBW: 30 Hz, VBW: 30 Hz mit Peak Tabelle

Hier die Mes­sun­gen mit 100 kHz Spann­brei­te und RBW=100 Hz:

DS815-TG, Quelle: AD9834, Center: 10.7 MHz, Span: 100 kHz, RBW: 100 Hz, VBW: 100 Hz
DS815-TG, Quel­le: AD9834, Cen­ter: 10.7 MHz, Span: 100 kHz, RBW: 100 Hz, VBW: 100 Hz

SSA3032X-Plus, Quelle: AD9834, Center: 10.7 MHz, Span: 100 kHz, RBW: 100 Hz, VBW: 100 Hz
SSA3032X-Plus, Quel­le: AD9834, Cen­ter: 10.7 MHz, Span: 100 kHz, RBW: 100 Hz, VBW: 100 Hz

Es ist auch jeweils der Rausch­pe­gel im 10 kHz Abstand dar­ge­stellt. Er ist in bei­den Fäl­len kon­si­stent zur Breit­band­mes­sung, unter­schei­det sich aber um mehr als 12 dB. Der Unter­schied ist mit dem deut­lich schlech­te­ren Pha­sen­rau­schen des Rigol zu erklä­ren. Er ist mit <-80 dBm/Hz im 10 kHz Abstand spe­zi­fi­ziert, was bei der ein­ge­stell­ten RBW von 100 Hz 20 dB mehr, also ‑60 dBm erwar­ten lässt. Anders aus­ge­drückt: ein guter Teil des beim Rigol gezeig­ten Rau­schens kommt von sei­nem ein­ge­bau­ten Oszil­la­tor. Hier wür­de ich also dem Sig­lent mehr ver­trau­en, wenn­gleich der Abfall der Rau­schens in Trä­ger­nä­he auch in die­ser Auf­lö­sung noch deut­lich zu sehen ist.

Nach­fol­gend noch ohne Kom­men­ta­re wei­te­re Schmal­band­mes­sun­gen mit Spann­brei­ten von 10 kHz:

DS815-TG, Quelle: AD9834, Center: 10.7 MHz, Span: 10 kHz, RBW: 10 Hz, VBW: 10 Hz
DS815-TG, Quel­le: AD9834, Cen­ter: 10.7 MHz, Span: 10 kHz, RBW: 10 Hz, VBW: 10 Hz

SSA3032X-Plus, Quelle: AD9834, Center: 10.7 MHz, Span: 10 kHz, RBW: 10 Hz, VBW: 10 Hz
SSA3032X-Plus, Quel­le: AD9834, Cen­ter: 10.7 MHz, Span: 10 kHz, RBW: 10 Hz, VBW: 10 Hz

…und 1 kHz:

DS815-TG, Quelle: AD9834, Center: 10.7 MHz, Span: 1 kHz, RBW: 10 Hz, VBW: 1 Hz
DS815-TG, Quel­le: AD9834, Cen­ter: 10.7 MHz, Span: 1 kHz, RBW: 10 Hz, VBW: 1 Hz

SSA3032X-Plus, Quelle: AD9834, Center: 10.7 MHz, Span: 1 kHz, RBW: 10 Hz, VBW: 1 Hz
SSA3032X-Plus, Quel­le: AD9834, Cen­ter: 10.7 MHz, Span: 1 kHz, RBW: 10 Hz, VBW: 1 Hz

Bei die­sen sehr schmal­ban­di­gen Mes­sun­gen kommt das gerin­ge Pha­sen­rau­schen des Sig­lent voll zur Gel­tung. Statt ‑61 dBc beim Rigol sehen wir hier knapp ‑84 dBc im Abstand von 100 Hz zum Trä­ger. Außer­dem ist zu beach­ten, daß der Rigol bei die­sen Ein­stel­lun­gen 100 Sekun­den pro Sweep benö­tigt, der Sig­lent auf­grund der FFT aber nur 0,338 Sekun­den. Da macht das Mes­sen Spaß! Auch aus die­sem Grund woll­te ich das Gerät dann doch nicht wie­der hergeben.

Dar­über­hin­aus gestat­tet der Sig­lent Mes­sun­gen mit RBW=VBW=1Hz und mit einer Spann­brei­te von 100 Hz erhält man dann fol­gen­des hoch­auf­ge­lö­ste Meßergebnis:

SSA3032X-Plus, Quelle: AD9834, Center: 10.7 MHz, Span: 100 Hz, RBW: 1 Hz, VBW: 1 Hz, Average
SSA3032X-Plus, Quel­le: AD9834, Cen­ter: 10.7 MHz, Span: 100 Hz, RBW: 1 Hz, VBW: 1 Hz, Average

Nach die­ser Mes­sung ist das Pha­sen­rau­schen im Abstand von 10 Hz also ‑84 dBc. 

Mes­sun­gen des Sen­de­si­gnals eines ICOM IC-7300 Transceivers

Um auch die Meß­er­geb­nis­se eines hoch­wer­ti­gen Signals zu zei­gen, habe ich das Aus­gangs­si­gnal eines IC-7300 Trans­cei­vers von ICOM gemes­sen. Er wur­de bei 10,125 MHz auf nied­rig­ste Sen­de­lei­stung 1% ein­ge­stellt, was etwa 1 Watt, also 30 dBm ent­spre­chen soll­te. Der Spek­trum­ana­ly­sa­tor wur­de über einen 30 dB Abschwä­cher und einen wei­te­ren 10 dB Abschwä­cher ange­schlos­sen, so daß am Ein­gang etwa ‑10 dBm anlie­gen. Alle Mes­sun­gen sind in der Betriebs­art AM durch­ge­führt wor­den, wobei optio­nal ein 2 kHz Sinu­ssi­gnal an den Audio­ein­gang ange­legt wur­de. Es wird vom PC gespeist, des­sen Audio­pe­gel auf 15% oder 71% ein­ge­stellt wur­de. Das sind will­kür­li­che und rela­ti­ve Pegel, die kei­ne Rück­schlüs­se auf den tat­säch­li­chen abso­lu­ten Signal­pe­gel zulassen.

Der unmo­du­lier­te Trä­ger wird mit etwa ‑8 dBm ange­zeigt, was also +32 dBm Ein­gangs­pe­gel vor den Abschwä­chern ent­spricht. Das wären 1,6 Watt, was in der Betriebs­art AM aber nur 50% der Aus­gangs­lei­stung sind. Tat­säch­lich ent­spricht damit die ein­ge­stell­te Aus­gangs­lei­stung von 1% also tat­säch­lich 3 Watt. Das ist in Ord­nung, gera­de im unte­ren Bereich ist die Ein­stel­lung der Aus­gangs­lei­stung sicher nicht sehr genau.

Der Über­sicht­lich­keit hal­ber sind die Meß­er­geb­nis­se nach­fol­gend als Gale­rie ein­ge­fügt. Klicken auf eine Mes­sung öff­net das jewei­li­ge Bild in vol­ler Auf­lö­sung in einem neu­en Tab.

Der SSA3032X-Plus kann Spek­tren auch als Was­ser­fall­dia­gramm dar­stel­len. Das ist beson­ders hilf­reich bei Signa­len mit klei­nen Pegeln. Man erkennt optisch sehr schnell, wo noch „Schmutz“ im Spek­trum ist.

SSA3032X-Plus, Quelle: IC7300, Center: 10.125 MHz, Modulation: 2kHz@15%, Span: 5 kHz, RBW: 3 Hz, Spectrum display
SSA3032X-Plus, Quel­le: IC7300, Cen­ter: 10.125 MHz, Modu­la­ti­on: 2kHz@15%, Span: 5 kHz, RBW: 3 Hz, Spec­trum display

Die­se Mes­sung zeigt das mit 2 kHz sehr schwach AM-modu­lier­te Signal. Man erkennt deut­lich die Sei­ten­bän­der im Abstand von 2 kHz, aber auch win­zi­ge Sei­ten­band­si­gna­le um den Trä­ger her­um. In der Dar­stel­lung des Spek­trums wür­de man sie wahr­schein­lich als unkor­re­lier­tes Pha­sen­rau­schen übersehen.

Abschlie­ßend noch das Breit­band­spek­trum zwi­schen 1 MHz und 40 MHz:

Bei­de Gerä­te erken­nen neben dem Trä­ger auch die zwei­te und drit­te Ober­wel­le. Es gibt eine Dis­kre­panz über die jewei­li­gen Pegel, was mut­maß­lich der rela­tiv hohen Auf­lö­sungs­band­brei­te von 1 kHz geschul­det ist. Beson­ders beim Rigol füh­ren gerin­ge Auf­lö­sungs­band­brei­ten aber zu sehr lan­gen Meß­zei­ten, was ich hier ver­mei­den wollte.

Außer­dem fällt auf, daß der Rausch­pe­gel unter­halb von etwa 18 MHz um 10 bis 15 dB erhöht ist. Das ist mut­maß­lich auf ein Aus­gangs­fil­ter im IC-7300 zurückzuführen.

Zusam­men­fas­sung

Im Ver­gleich zur vor­he­ri­gen Gene­ra­ti­on, zu der ich den Rigol DSA815-TG zäh­le, haben die Sig­lent SSA3000X Spek­trum­ana­ly­sa­to­ren erheb­li­che Fort­schrit­te gemacht. Die Bild­schirm­auf­lö­sung ist von 800×460 Pixeln und 8″ Dis­play auf 1024×600 Pixel und ein 10.1″ Touch-Dis­play gestie­gen, die Meß­ge­schwin­dig­keit wur­de durch die ein­ge­bau­te FFT enorm erhöht und die Auf­lö­sungs­band­brei­te wur­de auf 1 Hz redu­ziert. Gleich­zei­tig wur­de das Pha­sen­rau­schen um min­de­stens 15 dB redu­ziert, beim Rigol waren es ‑80 dBc/Hz, beim Sig­lent ‑95 dBc/Hz, jeweils im 10 kHz Abstand.

Ein nicht leicht zu ver­dau­en­der Wehr­muts­trop­fen ist die oben gezeig­te min­de­stens 10 dB Rau­sch­über­hö­hung im Abstand von +/- 50 kHz zum Trä­ger. Das mag für die eine oder ande­re Anwen­dung ein K.O.-Kriterium sein. Ich den­ke aber, daß sich in der Preis­klas­se zur Zeit nichts bes­se­res fin­den lässt. Wenn man das Ver­hal­ten kennt, wird man damit leben kön­nen, zumal der Effekt gerin­ger wird, wenn der Trä­ger aus dem Sicht­feld bewegt wird.

Trotz der oben beschrie­be­nen Schwä­che wür­de ich den SSA3032X Plus, bzw. einen sei­ner Geschwi­ster, den SSA3015X Plus, SSA3021X Plus oder gar den SSA3075X Plus empfehlen.

Vor­schau auf Teil 2

Im näch­sten Teil wer­de ich eini­ge Mes­sun­gen mit den ein­ge­bau­ten Track­ing­ge­ne­ra­to­ren zei­gen. In der Bastel­ki­ste fin­den sich ein paar gefrä­ste Fil­ter­schal­tun­gen, z.B. ein 1,4 GHz Strei­fen­lei­tungs­fil­ter und ein 800 MHz Band­paß­fil­ter. Bei­de Fil­ter wur­den mit dem Ansoft Desi­gner SV2 ent­wor­fen und auf FR‑4 Basis­ma­te­ri­al gefräst. Auch ein Fil­ter mit ein­ge­bau­tem MMIC Ver­stär­ker soll­te für Bei­spiel­mes­sun­gen ver­wend­bar sein.

Mit einer eben­falls auf FR‑4 gefrä­sten 23 cm Patch-Anten­ne und einem exter­nen Richt­kopp­ler wer­de ich Refle­xi­ons­mes­sun­gen durchführen.

Hier die Links zu Teil 2 und Teil 3.

Touch­stone Datei­en mit Lib­re Office auswerten

Touch­stone Datei­en, übli­cher­wei­se mit der Endung .s1p oder .s2p sind les­ba­re Text­da­tei­en, die Netz­werk-Para­me­ter ent­hal­ten. Die­se Datei­en sind zu einem Stan­dard gewor­den. Sie kön­nen von vie­len Pro­gram­men der HF-Meß- und Simu­la­ti­ons­tech­nik gele­sen und geschrie­ben wer­den. Mit­un­ter ist es prak­tisch, sie auch mit einem Spreadsheet­pro­gramm zu bear­bei­ten. Hier soll an einem ein­fa­chen Bei­spiel, den mit einem VNWA gemes­se­nen s11 Para­me­tern, die prin­zi­pi­el­le Vor­ge­hens­wei­se beschrie­ben werden.

Ein rea­les Beispiel

Hier ist das Ergeb­nis der s11-Mes­sung einer kern­lo­sen Zylin­der­spu­le. Die VNWA Betriebs­soft­ware zeigt fol­gen­des an:

s11-Messung an einer kernlosen Zylinderspule
s11-Mes­sung an einer kern­lo­sen Zylinderspule

Die Meß­er­geb­nis­se kön­nen als Touch­stone-Datei expor­tiert werden: 

Hier wur­de als For­mat Real und Ima­gi­när­teil gewählt. Ande­re For­ma­te (Magnitu­de und Win­kel bzw. dB und Pha­se) sind auch wähl­bar und kön­nen genau­so gut wei­ter­ver­ar­bei­tet wer­den. Die ersten Zei­len sehen fol­gen­der­ma­ßen aus:

! ListType=Lin
# MHz S RI R 50
  5.0000000   0.0273505   0.9908113
  5.0237559   0.0325082   0.9905086

Die erste Zei­le star­tet mit einem „!“ und ist ein belie­bi­ger Kom­men­tar. Das „#“ in der zwei­ten Zei­le kenn­zeich­net die Opti­ons-Zei­le. In die­sem Fall besagt sie, daß Fre­quen­zen (erste Spal­te) in MHz ange­ge­ben sind. Das „S“ bedeu­tet, daß s‑Parameter fol­gen und zwar im For­mat RI, also Real­teil (zwei­te Spal­te) und Ima­gi­när­teil (drit­te Spal­te). R kenn­zeich­net den Refe­renz­wi­der­stand in Ohm, in die­sem und den mei­sten ande­ren Fäl­len 50 Ohm. Dann fol­gen belie­big vie­le Zei­len mit s‑Parametern im beschrie­be­nen For­mat. Ande­re For­ma­te sol­len hier nicht bespro­chen wer­den. Sie kön­nen der oben genann­ten Spe­zi­fi­ka­ti­on ent­nom­men werden.

Bevor man die­se Datei nun mit einem Spreadsheet-Pro­gramm, wie z.B. Libre­Of­fice, wei­ter­ver­ar­bei­ten kann, muß man sie in ein import­fä­hi­ges For­mat umwan­deln. Das geht am ein­fach­sten, indem man sie mit einem belie­bi­gen Text-Edi­tor in ein CSV-For­mat umwan­delt. CSV erwar­tet im ein­fach­sten Fall eine Beschrei­bung der nach­fol­gen­den Spal­ten in der ersten Zei­le, gefolgt von den Daten. Spal­ten­ele­men­te wer­den am besten durch „;“ getrennt, ande­re Trenn­zei­chen sind aber auch mög­lich. Dann müs­sen noch auf den mei­sten euro­päi­schen PCs die Dezi­mal­trenn­zei­chen von Punkt auf Kom­ma geän­dert wer­den. Die impor­tier­ba­re CSV-Datei sieht dann so aus:

MHz; Real; Imag;
  5,0000000;   0,0273505;   0,9908113;
  5,0237559;   0,0325082;   0,9905086;

In Libre­Of­fice impor­tiert sieht das dann fol­gen­der­ma­ßen aus:

s1p-File in LibreOffice importiert
s1p-File in Libre­Of­fice importiert

Damit kann man arbei­ten! Da Libre­Of­fice mit eini­gen ein­ge­bau­ten Funk­tio­nen auch kom­ple­xe Zah­len bear­bei­ten kann, ist es hilf­reich, die s11-Para­me­ter zunächst in eine kom­ple­xe Zahl umzu­wan­deln. Das geht mit der Funk­ti­on Komplexe(real;imag;„j“) in Spal­te D, wie hier für die erste Zei­le gezeigt:

=KOMPLEXE(B2;C2;"j")

„real“ ist der Real­teil und „imag“ der Ima­gi­när­teil der zu gene­rie­ren­den kom­ple­xen Zahl. Der drit­te Para­me­ter gibt an, wie die ima­gi­nä­re Ein­heit genannt wer­den soll. In der Elek­tro­tech­nik wird nor­ma­ler­wei­se ein „j“ gewählt.

Da alle wei­te­ren Berech­nun­gen auf der kom­ple­xen Impe­danz Z beru­hen, soll­te die­se als näch­stes berech­net wer­den. Das geht über fol­gen­de Formel:

          1 + s11
Z = Z0 * ---------
          1 - s11

In Lib­re Office wird die For­mel dann fol­gen­der­ma­ßen in Spal­te E codiert:

=IMPRODUKT(50;IMDIV(IMSUMME(1;D2);IMSUB(1;D2)))

Die Bezeich­nun­gen der Funk­tio­nen sind eigent­lich selbst­er­klä­rend: IMSUMME() und IMSUB() berech­nen die Sum­me bzw. die Dif­fe­renz zwei­er kom­ple­xer Zah­len, IMDIV() den Quo­ti­en­ten und IMPRODUKT() das Pro­dukt. Die Arbeit mit kom­ple­xen Zah­len wir damit zum Kin­der­spiel. Das Spreadsheet sieht nun fol­gen­der­ma­ßen aus:

s1p-File mit s11 und Z als komplexen Zahlen
s1p-File mit s11 und Z als kom­ple­xen Zahlen

Aus der Impe­danz und deren Kom­po­nen­ten X und R las­sen sich nun wie in die­sem Bei­trag zusam­men­ge­fasst wei­te­re Para­me­ter berech­nen, z.B. die Induk­ti­vi­tät L = X/ω und die Güte Q = X/R. Die dazu ver­wen­de­ten Libre­Of­fice-Funk­tio­nen sind:

Induktivität L [µH]: =IMAGINÄRTEIL(E2)/(2*PI()*A2)

Der Term „2∗PI()∗A2“ im Nen­ner ent­spricht dabei „2∗PI()∗f“, also ω. Da die Fre­quenz im MHz ange­ge­ben ist, wird die Induk­ti­vi­tät ohne wei­te­re Umrech­nung in µH ausgegeben.

Güte Q: =ABS(IMAGINÄRTEIL(E2)/IMREALTEIL(E2))

Damit die Güte auch im kapa­zi­ti­ven Bereich posi­tiv bleibt, wur­de hier noch die ABS() Funk­ti­on verwendet.

Die Berech­nung wei­te­rer Para­me­ter und die Wei­ter­ver­ar­bei­tung bei­spiels­wei­se zum Glät­ten der Kur­ven und zur gra­phi­schen Dar­stel­lung sei dem geneig­ten Leser über­las­sen. Hier ist das Lib­re Office File zum Experimentieren:

Spu­len­wickeln und ‑mes­sen in der Praxis

Über das Wickeln von Spu­len ist bereits viel nütz­li­ches geschrie­ben wor­den. Eini­ge Links auf hilf­rei­che Arti­kel und Werk­zeu­ge habe ich bereits bei der Beschrei­bung des Anten­nen­tu­n­ers ange­ge­ben. Die­se Werk­zeu­ge wer­den auch hier wie­der verwendet.

Begriffs­be­stim­mung

Frei­tra­gen­de zylin­dri­sche Spu­len wer­den oft als Luft­spu­len bezeich­net. Zu recht wei­ßen man­che dar­auf hin, daß das falsch sei, denn die Spu­le ist nicht aus Luft gewickelt, son­dern aus einem Lei­ter, mei­stens aus Kup­fer. Daher wird auch ger­ne der Begriff Luft­kern­spu­le als Gegen­satz zur Fer­rit­kern­spu­le ver­wen­det. Das hal­te ich, auch wenn es tech­nisch und gram­ma­ti­ka­lisch kor­rekt ist, für unglück­lich, dann die Luft im Kern der Spu­le hat kei­nen meß­ba­ren Ein­fluß auf ihre elek­tri­schen Eigen­schaf­ten. Ein Vaku­um wäre im Rah­men unse­rer Ama­teur­meß­mit­tel völ­lig iden­tisch. Ich bevor­zu­ge und ver­wen­de daher den Begriff kern­lo­se Spu­le.

Mei­ne Quel­le für Kupferdraht

Die nach­fol­gend exem­pla­risch beschrie­be­nen kern­lo­sen Spu­len sind aus blan­kem Kup­fer­draht gewickelt, der aus 3 x 1,5 mm² Man­tel­lei­tung gewon­nen wur­de (knapp 1,4 mm Durch­mes­ser). Rest­stücke die­ser Man­tel­lei­tung fal­len bei der Haus­in­stal­la­ti­on an. Selbst wenn man sol­che Kabel nicht hat, ist es wohl preis­wer­ter einen 25‑, 50- oder 100-m-Ring im Bau­markt zu kau­fen, als Kup­fer­lack­draht im Elek­tronik­han­del. Oxi­da­ti­on der blan­ken Spu­le läßt sich z.B. mit Löt­lack vor­beu­gen. Soll der Draht etwas dün­ner oder dicker sein, kann man auch Instal­la­ti­ons­lei­tun­gen mit 1 mm², 2,5 mm² oder noch grö­ße­rem Quer­schnitt bekom­men. Wem es auf das letz­te Quänt­chen Güte ankommt, der wird frei­lich zu ver­sil­ber­tem Kup­fer­draht (CuAg) greifen.

Zum Abman­teln der Kabel gibt es prak­ti­sche preis­wer­te Werk­zeu­ge im Bau­markt, soweit man sie nicht sowie­so im Werk­zeug­kof­fer hat. Als Bei­spiel die­ses Exem­plar, das knapp 40 Jah­re alt ist und mut­maß­lich dut­zen­de Stun­den im Ein­satz war:

Abisolierer aus dem Baumarkt
Abiso­lie­rer aus dem Baumarkt

Das Abman­teln einer ein­zel­nen Ader auf meh­re­re Meter ist nicht ganz so tri­vi­al. Eine Abiso­lier­zan­ge ist nur für weni­ge Zen­ti­me­ter geeig­net. Ich habe mir daher ein klei­nes Werk­zeug aus 8 mm dickem PVC gefräst. Es hat ein Loch mit 3 mm Durch­mes­ser, durch den eine Ader mit Iso­lie­rung passt und in einer pas­send gefrä­sten Nut ist die Klin­ge eines Cut­ters mit Heiß­kle­ber ein­ge­klebt. Die­se Klin­ge ist so justiert, daß sie die Iso­lie­rung des Drah­tes hin­rei­chend weit ein­schnei­det, so daß sie nach dem Durch­zie­hen fast von sel­ber abfällt. Hier zwei Fotos davon:

Abisolierer für einzelne Adern mit eingeklebter Cutterklinge
Abiso­lie­rer für ein­zel­ne Adern mit ein­ge­kleb­ter Cutterklinge

Abisolierer für einzelne Adern (mit isolierter Ader)
Abiso­lie­rer für ein­zel­ne Adern (mit iso­lier­ter Ader)

Fer­rit­kern oder kern­lo­se Spulen?

Es gibt doch so schö­ne und preis­wer­te Eisen­pul­ver- und Ferritring­ker­ne, die mit viel weni­ger Win­dun­gen und klei­ne­rer Bau­art die­sel­be Induk­ti­vi­tät errei­chen, wie eine kern­lo­se Zylin­der­spu­le. Da man mit einem kür­ze­ren Draht aus­kommt, soll­te auch die Güte bes­ser sein. War­um soll man da eine kern­lo­se Spu­le verwenden?

Alle Spu­len­ker­ne haben die prin­zi­pi­ell nach­tei­li­ge Eigen­schaft, bei zu gro­ßer magne­ti­scher Feld­stär­ke in die Sät­ti­gung zu gera­ten. Bei kern­lo­sen Spu­len steigt die magne­ti­sche Fluß­dich­te B pro­por­tio­nal mit der magne­ti­schen Feld­stär­ke H, die wie­der­um von der Strom­stär­ke in der Spu­le bestimmt wird. Bei Spu­len mit Ker­nen ist das nicht mehr der Fall, in der Sät­ti­gung steigt die Fluß­dich­te nur noch gering an (Weich­ma­gne­ti­sche Werk­stof­fe). Die Induk­ti­vi­tät der Spu­le wird daher bei hohen Lei­stun­gen nicht­li­ne­ar. Die bei gerin­ger Lei­stung mit einem VNWA gemes­se­nen Daten sind also nicht ohne wei­te­res auf den Betrieb mit höhe­rer Lei­stung über­trag­bar. Außer­dem gibt es wegen der Hyste­re­se­kur­ve Umma­gne­ti­sie­rungs­ver­lu­ste, die die Güte der Kern­spu­le nega­tiv beeinflussen.

Daher müs­sen Kern­spu­len für die Betriebs­lei­stung hin­rei­chend dimen­sio­niert sein. Aus eige­ner Erfah­rung kön­nen Ker­ne schon bei 100 Watt Sen­de­lei­stung sehr heiß wer­den. Wenn sie dann die Curie-Tem­pe­ra­tur über­schrei­ten, ver­lie­ren sie völ­lig ihre magne­ti­schen Eigen­schaf­ten. Zudem sind man­che Ker­ne elek­trisch lei­tend, was ins­be­son­de­re bei hohen HF-Span­nun­gen eine hin­rei­chen­de Iso­lie­rung der Wick­lung erfordert.

Aus die­sen Grün­den bevor­zu­ge ich, wenn mög­lich, kern­lo­se Spu­len, zumin­dest wenn Lei­stung im Spiel ist oder eine mög­lichst hohe Güte benö­tigt wird.

Spu­len­mes­sung mit dem VNWA

Hat man nun nach einer der vor­lie­gen­den Anlei­tun­gen eine schö­ne Spu­le gewickelt, dann muß sie auch qua­li­fi­ziert nach­ge­mes­sen wer­den. Man will im wesent­li­chen wis­sen, ob sie die ange­streb­te Induk­ti­vi­tät und Güte hat und natür­lich auch, bei wel­cher Fre­quenz sie ihre Par­al­lel­re­so­nanz auf­weist. Nur unter­halb die­ser Selbst­re­so­nanz­fre­quenz (SRF) ist sie als Induk­ti­vi­tät zu gebrauchen.

Ein­la­gi­ge kern­lo­se Zylinderspule

Zum Ein­stieg zei­ge ich mal den Bau und die Mes­sung einer ein­la­gi­gen kern­lo­sen Zylin­der­spu­le aus 1,4 mm Kup­fer­draht mit 9 Win­dun­gen, 30,5 mm Durch­mes­ser und 3 mm Win­dungs­ab­stand, also 27 mm Gesamtlänge.

kernlose Zylinderspule mit 9 Windungen
kern­lo­se Zylin­der­spu­le mit 9 Windungen

Die Spu­le wur­de zunächst auf einem Wickel­kör­per von etwa 28 mm Durch­mes­ser, einem lee­ren Mul­ti­vit­amin-Brau­se­ta­blet­ten-Röhr­chen, gewickelt. Nach dem Wickeln dehnt sie sich wegen der ver­blei­ben­den Span­nung auf gut 30 mm auf und kann dann leicht in einen vor­be­rei­te­ten gefrä­sten Hal­ter aus unbe­schich­te­tem GFK-Mate­ri­al ein­ge­schraubt wer­den. Er zwingt die Spu­le auf einen Durch­mes­ser von 30,5 mm und einen Win­dungs­ab­stand von 1,5 mm. Die zwei­te Rei­he von Boh­run­gen ist zum Ein­schrau­ben einer äuße­ren, etwas grö­ße­ren, Spu­le vor­ge­se­hen. Damit sind also zwei- oder mehr­la­gi­ge kern­lo­se Spu­len mög­lich, die spä­ter noch unter­sucht werden.

Nach dem Spreadsheet von HB9DFZ soll­te die­se Spu­le eine Induk­ti­vi­tät von 1,729 µH und bei 5 MHz eine Güte von 306,8 haben. Zu beach­ten ist, daß das Spreadsheet kei­ne para­si­tä­ren Kapa­zi­tä­ten, also auch kei­ne Selbst­re­so­nanz­fre­quenz berück­sich­tigt. Daher wächst die errech­ne­te Güte gren­zen­los mit der Fre­quenz. Das Spreadsheet ist daher zur Abschät­zung der Güte nur deut­lich unter­halb der SRF zu gebrauchen.

Der Meß­auf­bau sieht fol­gen­der­ma­ßen aus:

Der Testaufbau mit einem VNWA
Der Test­auf­bau mit einem VNWA

Die Spu­le wird nur an den Meß­aus­gang des VNWA ange­schlos­sen, es wer­den also nur die s11-Para­me­ter gemes­sen. Letzt­lich funk­tio­niert die Mes­sung genau­so, wie die LTSpi­ce-Simu­la­ti­on im vor­he­ri­gen Bei­trag: es wird eine defi­nier­te Meß­span­nung auf die Spu­le gege­ben und der dar­aus resul­tie­ren­de Strom gemes­sen. Span­nung und Strom wer­den jeweils in Betrag und Pha­se gemes­sen. Dar­aus wer­den dann wie bei LTSpi­ce alle unten dar­ge­stell­ten Para­me­ter errechnet.

Messung einer kernlosen Zylinderspule mit dem DG8SAQ VNWA
Mes­sung einer kern­lo­sen Zylin­der­spu­le mit dem DG8SAQ VNWA

Zur Ver­gleich­bar­keit mit den Simu­la­tio­nen sind auch hier wie­der der Schein­wi­der­stand |Z|, die Induk­ti­vi­tät L und die Güte QL dar­ge­stellt. Zur Ver­deut­li­chung sind fünf Mar­ker an unter­schied­li­chen Fre­quen­zen eingefügt.

Bei nied­ri­gen Fre­quen­zen wird eine Induk­ti­vi­tät von 1,75 µH gemes­sen, was erstaun­lich genau der vor­her­ge­sag­ten Induk­ti­vi­tät von 1,73 µH entspricht.

Die Selbst­re­so­nanz­fre­quenz der Spu­le liegt bei 98,4 MHz, am rech­ten Rand des Dia­gramms. Aus der SRF und der Induk­ti­vi­tät von 1,75 µH kann man nach der Thom­son­schen Schwin­gungs­glei­chung auf eine para­si­tä­re Kapa­zi­tät von etwa 1,5 pF schließen.

Die Güte bei 5 MHz liegt bei gemes­se­nen 375, was den vor­her­ge­sag­ten 307 auch recht nahe kommt. Güte­mes­sun­gen sind aller­dings noto­risch unge­nau und wer­den wei­ter unten noch etwas detail­lier­ter diskutiert.

Ein­la­gi­ge kern­lo­se Zylin­der­spu­le höhe­rer Induktivität

Mit­un­ter braucht man für die unte­ren Kurz­wel­len­bän­der Spu­len höhe­rer Induk­ti­vi­tät. Ab dem obe­ren ein­stel­li­gen µH-Bereich kön­nen sol­che Spu­len mecha­ni­sche Dimen­sio­nen anneh­men, die in den übli­chen Gehäu­sen kaum mehr hand­hab­bar sind. Das ändert aber nichts an ihrer Mach­bar­keit. Als Bei­spiel soll jetzt eine Spu­le von etwa 12 µH unter­sucht werden.

Durch Aus­pro­bie­ren prak­ti­ka­bler Wer­te erhält man mit dem Spreadsheet von HB9DFZ für eine Spu­le mit 80 mm Durch­mes­ser und einer Län­ge von 33,6 mm bei 12 Win­dun­gen eine Induk­ti­vi­tät von knapp 13 µH. Bei 10 MHz wird eine Güte von 930 prognostiziert.

Die Stei­gung von 2,8 mm wur­de übri­gens nach der Dau­men­re­gel aus­ge­wählt, wonach der Win­dungs­ab­stand für opti­ma­le Güte genau­so groß sein soll, wie der Draht­durch­mes­ser, näm­lich bei dem ver­wen­de­ten Draht jeweils 1,4 mm.

Wegen des gro­ßen Durch­mes­sers der Spu­le sind wei­te­re Abstands­hal­ter vor­ge­se­hen, die den kor­rek­ten Abstand der ein­zel­nen Win­dun­gen sicherstellen.

Einlagige kernlose Zylinderspule, 12 Windungen, 80 mm Durchmesser
Ein­la­gi­ge kern­lo­se Zylin­der­spu­le, 12 Win­dun­gen, 80 mm Durchmesser

Die nach­fol­gen­de Gra­fik zeigt die Meßergebnisse:

Meßergebnisse der einlagigen kernlosen Zylinderspule
Meß­er­geb­nis­se der ein­la­gi­gen kern­lo­sen Zylinderspule

Man beach­te, daß die ver­ti­ka­le Ska­lie­rung der Induk­ti­vi­tät und der Güte gegen­über der vori­gen Mes­sung geän­dert wur­de. Die Induk­ti­vi­tät ist mit 14,2 µH etwas höher als berech­net. Bei der Güte soll­te man sich nicht auf die Mar­ker ver­las­sen, die zufäl­lig auf einem Aus­rei­ßer der Meß­wer­te ste­hen kön­nen. „Mit dem Auge gemit­telt“ dürf­te die 10 MHz-Güte bei etwa 400 lie­gen. Eine schmal­ban­di­ge­re Mes­sung von 8 bis 12 MHz ergibt eine Güte von unge­fähr 500, also etwa halb soviel, wie vor­her­ge­sagt. Die Selbst­re­so­nanz­fre­quenz liegt bei unge­fähr 20 MHz.

Da eine Spu­le von 80 mm Durch­mes­ser nur schlecht hand­hab­bar ist, soll nun eine zwei­la­gi­ge kern­lo­se Spu­le ähn­li­cher Induk­ti­vi­tät unter­sucht werden.

Zwei­la­gi­ge kern­lo­se Zylinderspule

Kern­lo­se Zylin­der­spu­len las­sen sich mit einem gefrä­sten Wickel­kör­per auch leicht als zwei- oder mehr­la­gi­ge Spu­len fer­ti­gen. Das soll­te die Induk­ti­vi­tät bei nied­ri­gem Bau­vo­lu­men deut­lich erhö­hen. Gleich­zei­tig wird man aber erwar­ten, daß die Selbst­re­so­nanz­fre­quenz sinkt, weil die para­si­tä­re Kapa­zi­tät grö­ßer wird, als bei einer ein­la­gi­gen Spule.

Der nach­fol­gend unter­such­te Pro­to­typ der zwei­la­gi­gen Zylin­der­spu­le besteht aus zwei zunächst unab­hän­gi­gen Spu­len. Sie sind ein­zeln gewickelt, wur­den nach­ein­an­der in den Spu­len­trä­ger ein­ge­dreht (am besten fängt man mit der inne­ren Spu­le an) und dann die Dräh­te am einen Ende anein­an­der­ge­lö­tet, am ande­ren Ende wur­de eine Meß­buch­se angelötet.

Zu Beach­ten ist, daß der Wickel­sinn bei­der Spu­len gleich sein muß. Da die eine Spu­le nach oben und die ande­re nach unten steigt, muß die eine links­her­um und die ande­re rechts­her­um gewickelt wer­den. Zur Wah­rung der Form­sta­bi­li­tät und des Abstan­des bei­der Spu­len sind hier noch klei­ne Abstands­hal­ter ein­ge­klemmt. Beim Frä­sen die­ser Hal­ter ist zu beach­ten, daß die Win­dun­gen der bei­den Spu­len nicht par­al­lel ver­lau­fen, son­dern sich wegen der ent­ge­gen­ge­setz­ten Wickel­rich­tung bei 90° und 270° schnei­den. Die Ein­ker­bun­gen auf bei­den Sei­ten soll­ten sich also gegen­über lie­gen. Anders als hier gezeigt rei­chen zwei die­ser Hal­ter auch völ­lig aus.

Die inne­re Spu­le hat einen Durch­mes­ser von 28 mm, die äuße­re von 36 mm. Sowohl auf der inne­ren wie auch auf der äuße­ren Spu­le sind 13,5 Win­dun­gen auf­ge­bracht, was ins­ge­samt 27 Win­dun­gen ergibt. Die Stei­gung beträgt jeweils 2,8 mm, was zu knapp 38 mm Spu­len­län­ge führt (2,8 mm ∗ 13,5 Windungen).

Zur über­schlä­gi­gen Bestim­mung der Induk­ti­vi­tät neh­me ich einen mitt­le­ren Durch­mes­ser von 32 mm und kom­me mit dem oben schon genann­ten Spreadsheet von HB9DFZ auf 12,88 µH und bei 10 MHz auf eine Güte von 213.

Meß­er­geb­nis­se der zwei­la­gi­gen Spule

Meßergebnisse der zweilagigen kernlosen Zylinderspule
Meß­er­geb­nis­se der zwei­la­gi­gen kern­lo­sen Zylinderspule

Die gemes­se­ne Induk­ti­vi­tät liegt bei etwa 11,4 µH, also etwas unter­halb, aber den­noch recht nahe bei den oben errech­ne­ten 12,88 µH. Die vor­her­ge­sag­te Güte bei 10 MHz von 213 wird mit etwa 400 (wie­der „mit dem Auge gemit­telt“) deut­lich über­bo­ten. Es fällt auf, daß die Güte auch bei Fre­quen­zen über 10 MHz, anders als bei der ein­la­gi­gen Spu­le, rela­tiv hoch bleibt. Eine etwas breit­ban­di­ge­re Mes­sung zeigt, daß die Selbst­re­so­nanz­fre­quenz bei etwa 19 MHz liegt.

Ein kur­zer Ver­gleich mit der ein­la­gi­gen Spu­le zeigt also, daß SRF und Güte nur wenig gesun­ken sind. Nicht ver­ges­sen darf man aller­dings, daß die Induk­ti­vi­tät der ein­la­gi­gen Spu­le doch etwa 25% höher ist. Ein fai­rer Ver­gleich wirk­lich glei­cher Induk­ti­vi­tä­ten, wird daher noch deut­li­cher zugun­sten der ein­la­gi­gen Spu­le aus­fal­len (aber „Wel­ten“ lie­gen nicht dazwischen).

Ver­gleichs­mes­sung einer Ringkernspule

Zum Ver­gleich mit den ein- und zwei­la­gi­gen kern­lo­sen Spu­len soll eine Ring­kern­spu­le ähn­li­cher Induk­ti­vi­tät unter­sucht wer­den. Weil vor­han­den, fällt die Wahl auf einen FT114-61 Ring­kern. Der mini-Ring­kern­rech­ner errech­net für 12 Win­dun­gen eine Induk­ti­vi­tät von 11,4 µH.

Ringkernspule. 12 Windungen auf FT114-61
Ring­kern­spu­le. 12 Win­dun­gen auf FT114-61

Meß­er­geb­nis­se der Ringkernspule

Meßergebnisse der Ringkernspule
Meß­er­geb­nis­se der Ringkernspule

Die Induk­ti­vi­tät liegt mit 10,9 µH auch hier leicht unter der pro­gno­sti­zier­ten von 11,4 µH. Die Selbst­re­so­nanz­fre­quenz ist hier nicht gezeigt, sie liegt bei knapp 30 MHz. Bei nied­ri­gen Fre­quen­zen von 1 und 2 MHz ist die Güte sehr hoch, sie sinkt aber schon bei 5 MHz unter die der kern­lo­sen Spu­le und sie wird schon bei 10 und 14 MHz kaum mehr als ein fünf­tel der zwei­la­gi­gen kern­lo­sen Spu­le. Auch wenn man Güte­mes­sun­gen immer etwas kri­tisch betrach­ten soll­te, ist der Trend eindeutig.

Zusam­men­fas­sung der Meßergebnisse

Es wur­den exem­pla­risch drei Spu­len mit unge­fähr glei­cher Induk­ti­vi­tät mit einem VNWA von DG8SAQ durch­ge­mes­sen. Das nach­fol­gen­de Foto zeigt einen Grö­ßen­ver­gleich der Spulen.

Größenvergleich der hier gemessenen Spulen
Grö­ßen­ver­gleich der hier gemes­se­nen Spulen

Die größ­te Spu­le is eine ein­la­gi­ge kern­lo­se Spu­le mit 80 mm Durch­mes­ser und 34 mm Höhe. Bei 10 MHz hat sie die beste Güte die­ser Spu­len und ihre Selbst­re­so­nanz­fre­quenz liegt bei 20 MHz. Die zwei­la­gi­ge kern­lo­se Spu­le steht ihr in den elek­tri­schen Eigen­schaf­ten kaum nach, hat aber weni­ger als den hal­ben Durch­mes­ser, belegt damit also weni­ger als ein vier­tel der Flä­che und ist nur 4 mm höher.

Die Grö­ße der Ring­kern­spu­le ist unschlag­bar. Ihr Durch­mes­ser ist dem der zwei­la­gi­gen Zylin­der­spu­le ähn­lich (33 mm vs. 36 mm), aber die Höhe beträgt mit 10 mm nur ein gutes vier­tel der Zylin­der­spu­le. Dafür ist die Zylin­der­spu­le wesent­lich höher belast­bar. Ihre Güte von etwa 400 bedeu­tet, daß sie ein vier­hun­dert­stel der beauf­schlag­ten Lei­stung in Wär­me umwan­delt, also 1 Watt bei 400 Watt Lei­stung. Da sie „luft­ge­kühlt“ ist, wür­de ich ihr ohne wei­te­res 2,5 W Ver­lust zumu­ten, sie also mit 1 kW betrei­ben. In der Ring­kern­spu­le wird bei einer Güte von 80 bereits bei 80 W Bela­stung ein Watt ver­bra­ten. Da sie wegen der kom­pak­ten Bau­wei­se viel schlech­ter gekühlt wird, ist die­se Bela­stung schon bedenklich.

Quint­essenz, wenn’s passt: kern­lo­se Spu­len verwenden!

Güte­mes­sun­gen an Spulen

Güte­mes­sun­gen sind noto­risch unge­nau und rausch­be­haf­tet. Das liegt dar­an, daß Güte­mes­sun­gen an die Meß­gren­zen sto­ßen. Der Blind­wi­der­stand liegt in der Grö­ßen­ord­nung hun­der­te Ohm bis weni­ge kΩ, wäh­rend der Wirk­wider­stand in der Grö­ßen­ord­nung eini­ger 100 mΩ bis weni­gen Ohm liegt. Außer­dem kann die Spu­le Stö­run­gen aus der Umge­bung ein­fan­gen. Die oben gezeig­te Meß­kur­ve ver­wen­det schon einen Trick, um die Kur­ve zu glät­ten: die Kur­ve der Güte wird über die jeweils benach­bar­ten 40 Meß­punk­te geglät­tet (smoot­hing). Die unge­glät­te­te Kur­ve sieht so aus:

Messung einer kernlosen Zylinderspule mit dem DG8SAQ VNWA
Mes­sung einer kern­lo­sen Zylin­der­spu­le mit dem DG8SAQ VNWA, ohne Smoot­hing der Güte

Und das ist noch harm­los, denn man kann schon optisch nur mit dem Auge die Güte abschät­zen. Das ist nicht immer so. Die bei­den ande­ren Kur­ven in die­sem Bei­spiel sind übri­gens nicht geglättet.

Die­sel­be Spu­le ist hier noch­mal etwas schmal­ban­di­ger gemes­sen und neben der Güte wird auch noch ihr Blind­wi­der­stand und ihr Wirk­wider­stand dargestellt.

Güte, Wirk- und Blindwiderstand einer Spule
Güte, Wirk- und Blind­wi­der­stand einer Spule

Güte und Wirk­wider­stand sind über jeweils 40 Meß­wer­te geglät­tet, der Blind­wi­der­stand ist nicht geglät­tet. Die Güte wird aus Q=X/R berech­net und man sieht and den Meß­wer­ten deut­lich, daß der Wirk­wider­stand R für das Rau­schen und die nicht-Mono­to­nie der Güte ver­ant­wort­lich ist. Die Güte folgt spie­gel­bild­lich dem Wirk­wider­stand, die Kur­ve des Blind­wi­der­stands ist im Rah­men der Meß­ge­nau­ig­keit rausch­frei und monoton.

Trotz Glät­tung ver­blei­ben Unre­gel­mä­ßig­kei­ten (nicht-Mono­to­ni­en) in den Meß­kur­ven, die nicht mehr auf Rau­schen zurück­zu­füh­ren sind. Man sieht hier z.B. eine Erhö­hung des Wirk­wider­stan­des und ent­spre­chen­de Ver­min­de­rung der Güte zwi­schen etwa 15 und 30 MHz. Sie blei­ben bei Wie­der­ho­lun­gen der Mes­sung im wesent­li­chen gleich. Die Ursa­che ist unbe­kannt und gele­gent­lich wer­de ich da noch­mal wei­ter forschen.

Man kann die Meß­kur­ve noch wei­ter glät­ten und auch eine Aus­gleichs­kur­ve oder einen Spli­ne dafür berech­nen. Das soll­te natür­lich mit gro­ßer Vor­sicht gemacht wer­den, weil es zwar die Kur­ven ver­schö­nert, aber die wah­ren Ursa­chen verdeckt.

Ver­bes­se­rung von Gütemessungen

Zur Ver­bes­se­rung der Güte­mes­sun­gen schlägt Kurt, OZ7OU, zwei unter­schied­li­che Maß­nah­men vor. Zum einen hilft es, die Spu­le von äuße­ren Stö­run­gen abzu­schir­men und sie z.B. in einen lee­ren Farb­ei­mer zu mon­tie­ren. Zum ande­ren kann man die Güte auch bei Seri­en­re­so­nanz mes­sen, wo die Impe­dan­zen ein Mini­mum errei­chen, bei dem sie mit guter Auf­lö­sung meß­bar sind. Eine Seri­en­re­so­nanz erreicht man durch Ein­schlei­fen eines pas­sen­den Kon­den­sa­tors hoher Güte.

Die Güte Q eines Schwing­krei­ses im Reso­nanz­fall errech­net sich aus der Güte QC des Kon­den­sa­tors und der Güte QL der Spu­le nach fol­gen­der Formel:


Schwing­kreis­gü­te:

     QL * QC 
Q = ────────
     QL + QC

Wenn man einen Kon­den­sa­tor aus­wählt, des­sen Güte weit­aus höher als die der Spu­le ist, dann nähert sich die gemes­se­ne Güte Q der Güte der Spu­le QL an. Zumin­dest erhält man eine gute unte­re Abschät­zung: auch bei einem Kon­den­sa­tor gerin­ger Güte, ist die tat­säch­li­che Güte der Spu­le also immer noch bes­ser, als die damit gemes­se­ne Güte.

Der klei­ne Nach­teil die­ser Metho­de ist, daß man mit einem festen Kon­den­sa­tor immer nur die Güte bei einer ein­zi­gen Fre­quenz mes­sen kann. Kurt schlägt daher vor, einen Dreh­kon­den­sa­tor zu ver­wen­den, um die Güte leicht bei meh­re­ren unter­schied­li­chen Fre­quen­zen zu messen.

Da hier kei­ne hohen Anfor­de­run­gen an die Prä­zi­si­on der Güte­mes­sung gestellt wer­den sol­len, gebe ich mich für die hier gezeig­ten Spu­len mit der gemes­se­nen (und geglät­te­ten) Güte des VNWA zufrie­den. Sie lie­gen, wie ein­gangs gezeigt, nicht um Grö­ßen­ord­nun­gen dane­ben und soll­ten zumin­dest für ver­glei­chen­de Mes­sun­gen hin­rei­chend genau sein.

Wei­te­re geplan­te Ver­su­che: Sonderbauformen

Bei Gele­gen­heit wer­de ich noch eini­ge leicht zu fer­ti­gen­de Son­der­bau­for­men kern­lo­ser Spu­len untersuchen.

n‑eckige kern­lo­se Spulen

Spu­len müs­sen nicht zylin­der­för­mig sein, son­dern sie kön­nen auch einen n‑eckigen Quer­schnitt haben. Mit n gegen unend­lich wird dar­aus dann wie­der eine Zylin­der­spu­le. Da die Induk­ti­vi­tät bei sonst glei­chen Eigen­schaf­ten line­ar mit dem Quer­schnitt A wächst, hat eine qua­dra­tisch gewickel­te Spu­le gegen­über einer gleich­gro­ßen Zylin­der­spu­le eine knapp 30% höhe­re Induk­ti­vi­tät (Zylin­der­spu­le: AZ=π/4∗d²; Qua­drat­spu­le: AQ=d²; AQ/AZ=4/π=1,27). Die Län­ge L des Wickel­drah­tes steigt um den­sel­ben Pro­zent­satz (LZ=π∗d vs. LQ=4∗d; LQ/LZ=4/π=1,27), wodurch die Güte in erster Nähe­rung für glei­che Induk­ti­vi­tä­ten gleich­blei­ben soll­te. Kern­lo­se Spu­len mit qua­dra­ti­schem oder recht­ecki­gem Quer­schnitt könn­ten eine kom­pak­te­re Bau­wei­se der damit aus­ge­stat­te­ten Gerä­te erge­ben, weil sie den bei einer Zylin­der­spu­le unge­nutz­ten Raum mit­be­nut­zen. Das kann aber auch zu einem Null­sum­men­spiel wer­den, wenn grö­ße­re Abstän­de ein­ge­hal­ten wer­den müs­sen, um Kopp­lun­gen zu benach­bar­ten Bau­ele­men­ten zu verringern.

Ver­setz­te Wick­lun­gen n‑eckiger Spulen

Bei n‑eckigen Spu­len kann man auf einem geeig­ne­ten Wickel­kör­per ein­zel­ne Win­dun­gen gegen­ein­an­der ver­dre­hen. Das Prin­zip wird bei Kreuzwickel­spu­len schon lan­ge ange­wen­det. Das soll­te zu einer Ver­rin­ge­rung der para­si­tä­ren Kapa­zi­tät und einer ent­spre­chen­den Erhö­hung der Selbst­re­so­nanz­fre­quenz führen.

Koni­sche Spulen

Seit eini­ger Zeit wer­den für den UHF-Fre­quenz­be­reich koni­sche Spu­len ange­bo­ten, die zwar zylin­drisch sind, deren Durch­mes­ser sich aber über die Län­ge ändert. Das soll die Güte der Spu­le erhö­hen. Mal sehen, ob da was (meß­ba­res) dran ist.

Simu­lie­ren, Wickeln und Mes­sen von elek­tri­schen Spulen

Eine Spu­le zu bau­en ist ein­fach: ein paar Win­dun­gen Draht auf einen pas­sen­den Wickel­kern auf­wickeln, ein­lö­ten, fer­tig. Deut­lich schwie­ri­ger wird es, wenn die Spu­le bestimm­te mecha­ni­sche und elek­tri­sche Eigen­schaf­ten haben soll: Abmes­sun­gen, Induk­ti­vi­tät, Güte, Selbst­re­so­nanz­fre­quenz (SRF) oder mini­ma­le elek­tri­sche Belast­bar­keit für Sen­de­rend­stu­fen und zur Anten­nen­an­pas­sung. Die­se Bei­trags­rei­he zeigt Bei­spie­le zur Simu­la­ti­on idea­ler und rea­ler Spu­len mit LTSpi­ce, zum Wickeln sol­cher Spu­len und zur Mes­sung der Para­me­ter mit dem VNWA von DG8SAQ.

Wir star­ten mit einer kur­zen Wie­der­ho­lung der Grund­la­gen und der Simu­la­ti­on. Den übli­chen Kon­ven­tio­nen fol­gend wer­den hier kom­ple­xe Zah­len mit einem Unter­strich und die ima­gi­nä­re Ein­heit, wie in der Elek­tro­tech­nik üblich, mit j gekennzeichnet.

Grund­la­gen

Eine Spu­le hat die Induk­ti­vi­tät L, die von ihren mecha­ni­schen Abmes­sun­gen bestimmt wird. Wird sie von einem elek­tri­schen Strom durch­flos­sen, erzeugt sie ein Magnet­feld, das Ener­gie spei­chert. Jede Spu­le hat einen kom­ple­xen Wech­sel­strom­wi­der­stand, die Impe­danz Z:


Impe­danz:


Z = R + jω ∗ L


(1)

Der Real­teil der Impe­danz ist der Wirk­wider­stand R:


Wirk­wider­stand:


R = Re(Z)


(2)

Der Ima­gi­när­teil der Impe­danz ist der Blind­wi­der­stand X:


Blind­wi­der­stand:


X = Im(Z) = 2πf ∗ L = ω ∗ L


(3)

Der Schein­wi­der­stand Z (nicht kom­plex, daher ohne Unter­strich) ist die pytha­go­räi­sche Sum­me von Wirk- und Blindwiderstand:


Schein­wi­der­stand:


Z = |Z| = Mag(Z)


(4)

Die Spu­len­gü­te Q ist das Ver­hält­nis des Blind­wi­der­stan­des X zum Wirk­wider­stand R einer Spule:


Spu­len­gü­te:


Q = X / R


(5)

Re(), Im() und Mag() sind Funk­tio­nen, die LTSpi­ce für kom­ple­xe Zah­len unterstützt.

Der Wirk­wider­stand einer idea­len Spu­le ist R = 0 Ω und ihr Blind­wi­der­stand X steigt nach (3) pro­por­tio­nal mit der Fre­quenz f. Das schau­en wir uns nun ein­mal in einer LTSpi­ce-Simu­la­ti­on an.

Simu­la­ti­on einer (fast) idea­len Spule

Da die Simu­la­ti­on einer idea­len Spu­le L1 mit R = 0 Ω nach (5) zu einer unend­li­chen Güte führt, begin­nen wir mit der Simu­la­ti­on einer fast idea­len Spu­le. Sie soll eine Induk­ti­vi­tät von 10 µH, einen reel­len Wider­stand von R1 = 1 mΩ und kei­ne para­si­tä­re Par­al­lel­ka­pa­zi­tät haben (C1 = 0 pF):

fast ideale Spule
Ersatz­schalt­bild der fast idea­len Spule

Die unte­re Zei­le bedeu­tet, daß eine linea­re AC-Simu­la­ti­on von 1 Hz bis 5 MHz und 500 Punk­ten durch­ge­führt wird. Hier die gra­fi­schen Ergebnisse:

AC Simulation der fast idealen Spule
AC Simu­la­ti­on der fast idea­len Spule

Die Simu­la­ti­on zeigt oben den Schein­wi­der­stand Z (sie­he (4)), in der mitt­le­ren Gra­fik die Induk­ti­vi­tät der Spu­le (nach Glei­chung (3)) und unten ihre Güte (nach (5)). Alle drei Para­me­ter wer­den aus der kom­ple­xen Impe­danz Z errech­net, die der Quo­ti­ent der ange­leg­ten kom­ple­xen Span­nung und dem dar­aus resul­tie­ren­den kom­ple­xen Strom ist. LTSpi­ce errech­net die Impe­danz über die For­mel Z = V(V1)/-I(V1). Das nega­ti­ve Vor­zei­chen beim Strom ergibt sich aus der Stromrichtung.

Durch Vek­tor­ad­di­ti­on des Real- und Ima­gi­när­teils die­ser Impe­danz ergibt sich ein Sum­men­vek­tor, des­sen Län­ge der Schein­wi­der­stand Z = |Z| ist. LTSpi­ce errech­net die Län­ge eines Vek­tors mit der Funk­ti­on mag():

Z = |Z| = mag(V(v1)/-I(V1))

Die For­mel für den Blind­wi­der­stand der Spu­le (3) wird nach der Induk­ti­vi­tät auf­ge­löst also gilt L = X / ω:

L = 10∗∗6∗im(V(v1)/-I(v1))/w

Net­ter­wei­se kennt LTSpi­ce auch die Kreis­fre­quenz ω (= 2πf), die mit dem latei­ni­schen Buch­sta­ben „w“ in die For­mel ein­ge­ge­ben wird. Die­ser Aus­druck wird noch mit 106 mul­ti­pli­ziert, damit das Ergeb­nis in µH ange­zeigt wird. Die dar­ge­stell­te Ein­heit für die y‑Achse möge man hier igno­rie­ren, es soll­te tat­säch­lich µH sein, der Zah­len­wert ist kor­rekt. Die Induk­ti­vi­tät ist über die Fre­quenz kon­stant, so wie man es von einer idea­len Spu­le erwartet.

Im unte­ren Dia­gramm ist die Spu­len­gü­te Q dar­ge­stellt, die nach (5) errech­net wird:

im(V(v1)/-I(V1))/Re(V(v1)/-I(V1))

Da der Blind­wi­der­stand bei der idea­len Spu­le line­ar mit der Fre­quenz steigt und der Wirk­wider­stand kon­stant bleibt, steigt die Güte der Spu­le line­ar mit der Fre­quenz. Hier sieht man, war­um eine „fast“ idea­le Spu­le mit einem sehr gerin­gen Wirk­wider­stand grö­ßer als null gewählt wur­de: die Güte wür­de sonst unend­lich hoch (LTSpi­ce fängt den Feh­ler der Divi­si­on durch null ab, stellt aber kei­ne Kur­ve dar). Bei einer rea­len (nicht supra­lei­ten­den) Spu­le sind die hier errech­ne­ten Güten von eini­gen 100k natür­lich nicht erreich­bar. Rea­le Spu­len haben Güten zwi­schen 100 und 1000, mit Abwei­chun­gen nach oben und unten. Die Güte wird hier noch mit der Funk­ti­on abs() auf posi­ti­ve Wer­te umge­rech­net. Wie sich spä­ter zei­gen wird, wür­de sie sonst jen­seits der Selbst­re­so­nanz­fre­quenz nega­tiv, weil die Spu­le dann zu einem Kon­den­sa­tor mutiert.

Simu­la­ti­on rea­ler Spulen

Eine rea­le Spu­le ist lei­der nie­mals ide­al. Neben ihrer Induk­ti­vi­tät L hat sie eine signi­fi­kan­te par­al­le­le Kapa­zi­tät C und einen Wirk­wider­stand R grö­ßer null:

Einfaches Ersatzschaltbild einer realen Spule
Ein­fa­ches Ersatz­schalt­bild einer rea­len Spule

Den Wirk­wider­stand bil­det im wesent­li­chen der fre­quenz­ab­hän­gi­ge Wider­stand des Wickel­drah­tes. Er steigt wegen des Skin-Effekts und des Pro­xi­mi­ty-Effekts mit der Fre­quenz. Die Par­al­lel­ka­pa­zi­tät C kommt durch die Nähe der ein­zel­nen Win­dun­gen und der Anschluß­dräh­te zustan­de. R und C sind also kon­struk­ti­ons­ab­hän­gig und kön­nen daher in wei­ten Berei­chen vari­ie­ren. Nur um ein Gefühl zu bekom­men: bei den für Ama­teur­funk­zwecke im Kurz­wel­len­be­reich benö­tig­ten Spu­len von etwa 50 nH ~ 25 µH, die mit Kup­fer­draht von ein bis zwei Mil­li­me­ter Durch­mes­ser gewickelt wer­den, liegt R in der Grö­ßen­ord­nung von weni­gen Ohm und C in der Grö­ßen­ord­nung von weni­gen Pikofarad.

L und C bil­den einen Par­al­lel­schwing­kreis, der die Nutz­bar­keit der Spu­le schon deut­lich unter­halb sei­ner Selbst­re­so­nanz­fre­quenz ein­schränkt. Bei Fre­quen­zen ober­halb der SRF ist die Spu­le als sol­che völ­lig unbrauch­bar, denn sie ist kei­ne Spu­le mehr, son­dern sie wirkt wie ein Kon­den­sa­tor. Wegen der Par­al­lel­ka­pa­zi­tät C steigt der Blind­wi­der­stand der Spu­le schon unter­halb der SRF nicht mehr pro­por­tio­nal mit der Fre­quenz an, so wie es bei der idea­len Spu­le der Fall wäre. Der Kon­den­sa­tor bewirkt einen über­pro­por­tio­na­len Anstieg des Blind­wi­der­stan­des, der dann bei der Selbst­re­so­nanz­fre­quenz unend­lich groß wird.

R aus dem obi­gen Ersatz­schalt­bild bestimmt damit also umge­kehrt pro­por­tio­nal die Güte der Spu­le: je klei­ner R ist, umso höher ist die Güte. Da XL mit der Fre­quenz steigt, steigt also auch die Spu­len­gü­te mit der Fre­quenz. Das schau­en wir uns jetzt mal in der Simu­la­ti­on an.

Simu­la­ti­on einer fast rea­len Spule

Schau­en wir zunächst ein­mal, was pas­siert, wenn der Wirk­wider­stand auf etwas über­trie­be­ne 10 Ω erhöht wird und die Par­al­lel­ka­pa­zi­tät wei­ter­hin entfällt:

Ersatzschaltbild der fast realen Spule
Ersatz­schalt­bild der fast rea­len Spule

AC Simulation der fast realen Spule
AC Simu­la­ti­on der fast rea­len Spule

Der Schein­wi­der­stand kann nicht nied­ri­ger als der Wirk­wider­stand sein. Er ist daher auch bei nied­ri­gen Fre­quen­zen nicht nahe null, son­dern er star­tet bei den vor­ge­ge­be­nen 10 Ohm. Bei stei­gen­den Fre­quen­zen wird der Wirk­wider­stand gegen­über dem Blind­wi­der­stand immer weni­ger signi­fi­kant, so daß sich der Schein­wi­der­stand zu höhe­ren Fre­quen­zen hin nicht sicht­bar von der vori­gen fast idea­len Simu­la­ti­on unterscheidet.

Die Induk­ti­vi­tät bleibt auch hier kon­stant über der Fre­quenz. Auch die Güte bleibt line­ar fre­quenz­ab­hän­gig, fällt aber signi­fi­kant ab. Das ist natür­lich kein Wun­der, denn der Wirk­wider­stand steht im Nen­ner und geht umge­kehrt pro­por­tio­nal in die Güte ein.

Simu­la­ti­on einer rea­len Spule

Soweit war das zu erwar­ten. Jetzt schal­ten wir noch einen Kon­den­sa­tor von (rela­tiv rea­len) 10 pF par­al­lel und schau­en uns das Ergeb­nis an:

Ersatzschaltbild der realen Spule
Ersatz­schalt­bild der rea­len Spule

Zu Beach­ten ist, daß dies­mal die Simu­la­ti­on bis 12 MHz und damit nahe an die SRF der Spu­le von knapp 16 MHz geht.

AC Simulation der realen Spule
AC Simu­la­ti­on der rea­len Spule

Schein­wi­der­stand, errech­ne­te Induk­ti­vi­tät und Güte ändern sich nun signi­fi­kant und nicht mehr line­ar mit der Fre­quenz. Bei nied­ri­gen Fre­quen­zen bleibt die Induk­ti­vi­tät bei 10 µH und steigt dann mit der Fre­quenz stark an. Bei 12 MHz hat sie schon eine errech­ne­te Induk­ti­vi­tät von 23 µH. Die Güte der rea­len Spu­le steigt zunächst mit der Fre­quenz an, erreicht (hier bei etwa 9 MHz) ein Maxi­mum und fällt dann wie­der ab.

Bei die­sen Simu­la­ti­ons­er­geb­nis­sen stellt sich sofort die Fra­ge, ob die Simu­la­ti­on kor­rekt ist. Es sei hier vor­weg­ge­nom­men, daß die Mes­sun­gen an rea­len Spu­len mit dem VNWA die­sel­ben Ergeb­nis­se lie­fern, die Induk­ti­vi­tät der Spu­le steigt mit der Meß­fre­quenz an. Hat die Spu­le also bei 12 MHz tat­säch­lich mehr als die dop­pel­te Induk­ti­vi­tät als bei 6 MHz? Wel­cher Wert gilt denn nun?

Bau­en wir ein­fach mal einen Par­al­lel­schwing­kreis für 12 MHz. Aus der bekann­ten Thom­son­schen Schwin­gungs­glei­chung berech­nen wir die not­wen­di­ge Parallelkapazität.




Reso­nanz­fre­quenz:

           1     
f0 = ───────────────
               _____
     2 ⋅ π ⋅ ╲╱L ⋅ C


(6)

Für L = 10 µH errech­net man für 12 MHz eine Par­al­lel­ka­pa­zi­tät von 17,6 pF. Zu den bereits para­si­tär vor­han­de­nen 10 pF müs­sen wir also 7,6 pF für die Reso­nanz hin­zu­fü­gen. Rech­nen wir mit der simu­lier­ten bzw. gemes­se­nen Induk­ti­vi­tät von 23 µH bei 12 MHz, die schon die 10 pF ent­hält, dann kom­men wir eben­falls auf 7,6 pF. Für einen Par­al­lel­schwing­kreis sind also bei­de Induk­ti­vi­tä­ten kor­rekt und füh­ren zum sel­ben Ergeb­nis. Glei­ches gilt für den Serienresonanzkreis.

Zusam­men­ge­fasst: nimmt man zur Schwing­kreis­be­rech­nung die bei nied­ri­ger Fre­quenz gemes­se­ne Induk­ti­vi­tät, so muß man für den Kon­den­sa­tor immer noch die tat­säch­li­che para­si­tä­re Kapa­zi­tät berück­sich­ti­gen, also von der errech­ne­ten Kapa­zi­tät abzie­hen. Nimmt man die bei der Soll­fre­quenz gemes­se­ne Induk­ti­vi­tät für die Berech­nung, dann ist die para­si­tä­re Kapa­zi­tät bereits „ein­ge­preist“ und man berech­net nur noch die zusätz­lich benö­tig­te Kapazität.

Die Güte steigt zunächst recht line­ar mit der Fre­quenz an, so wie bei der idea­len Spu­le. Sie erreicht aber ein Maxi­mum und wird bei der SRF zu null, weil dann der Wirk­wider­stand sehr groß wird.

Simu­la­ti­on einer rea­len Spu­le bis ober­halb der Selbstresonanzfrequenz

Nach­fol­gend noch eine Simu­la­ti­on der rea­len Spu­le bis 20 MHz, also über die SRF hinaus.

Ersatzschaltbild der realen Spule bis über die Selbstresonanzfrequenz hinaus
Ersatz­schalt­bild der rea­len Spu­le bis über die Selbst­re­so­nanz­fre­quenz hinaus

AC Simulation der realen Spule bis über die Selbstresonanzfrequenz hinaus
AC Simu­la­ti­on der rea­len Spu­le bis über die Selbst­re­so­nanz­fre­quenz hinaus

Hier sieht man das Ver­hal­ten bei der Selbst­re­so­nanz­fre­quenz von knapp 16 MHz. Der Schein­wi­der­stand wird sehr hoch, so wie man das von einem Par­al­lel­schwing­kreis erwar­tet. Bei der SRF wer­den Induk­ti­vi­tät und Güte rech­ne­risch zu null, dar­über haben wir es mit einem Kon­den­sa­tor zu tun. Die Impe­danz wird nega­tiv und die Güte wird von der deut­lich höhe­ren Güte des Kon­den­sa­tors bestimmt.

Die­se Simu­la­ti­on erlaubt mit der nach C umge­form­ten Thom­son­schen Schwin­gungs­glei­chung (6) die Berech­nung der para­si­tä­ren Kapa­zi­tät: C = 1/(L∗ω2). Mit der bei nied­ri­gen Fre­quen­zen gemes­se­nen Induk­ti­vi­tät von 10 µH und der SRF bei 15,9 MHz ergibt sich dann die para­si­tä­re Kapa­zi­tät von 10 pF.

Soweit zur Spi­ce-Simu­la­ti­on elek­tri­scher Spu­len. Im näch­sten Teil die­ser Serie sol­len real gewickel­te Spu­len mit dem VNWA gemes­sen und bewer­tet werden.

Stay tun­ed…

Fre­quenz­zäh­ler – Ver­si­on 2.0

Wie schon im vori­gen Bei­trag zu dem Fre­quenz­zäh­ler ange­deu­tet, habe ich eine neue Ver­si­on ent­wickelt, die eini­ge Nach­tei­le behebt. Nun ist ein USB-RS232-Kon­ver­ter inte­griert, die CPU ist direkt auf die Lei­ter­plat­te gelö­tet und der Quarz­os­zil­la­tor ist ther­misch eng mit dem Tem­pe­ra­tur­sen­sor gekop­pelt. Der Zäh­ler wird jetzt, so wie man das von einem moder­nen PC-Peri­phe­rie­ge­rät erwar­tet, direkt über das USB-Inter­face ver­sorgt. Ein sepa­ra­tes Netz­teil ist nicht mehr nötig. Die Strom­auf­nah­me liegt bei unter 100 mA. Die Funk­ti­ons­wei­se ist weit­ge­hend kom­pa­ti­bel zur alten Ver­si­on, aber das CPLD-Pin­out unter­schei­det sich aus Grün­den des ein­fa­che­ren Rou­tings. Mit einer Grö­ße von 75 mm x 100 mm passt der Zäh­ler nun in ein FISCHER Frame Gehäu­se aus Aluminium.

Hier zunächst mal die 3D-Ansich­ten von KiCad und der Schaltplan:

Hier sind nun auch noch die KiCad V6.0 Pro­jekt­da­tei­en, der Schalt­plan und das Layout.

Seit der KiCad Ver­si­on 6.0 soll­ten alle Daten in die­sen Datei­en ent­hal­ten sein, so daß sie sich direkt auf einem ande­ren PC öff­nen und wei­ter­be­ar­bei­ten las­sen sollten.

Beschrei­bung

Auf der obe­ren lin­ken Sei­te des Boards sieht man den USB-RS232-Kon­ver­ter. Es han­delt sich um ein klei­nes Board mit dem FT232R-Bau­stein von FTDI. Die­ses Board ist für zwei bis drei Euro über die bekann­ten Online-Händ­ler zu bezie­hen. Im Zeh­ner­pack direkt aus Chi­na auch noch preiswerter.

Links unter dem FTDI-Board sieht man den Quarz­os­zil­la­tor und den Tem­pe­ra­tur­sen­sor. Ein gefrä­stes PVC-Gehäu­se sorgt für eine gewis­se ther­mi­sche Abschir­mung, so daß die Tem­pe­ra­tur des Quarz­os­zil­la­tors ziem­lich genau gemes­sen wer­den kann. Die­ses Gehäu­se besteht aus zwei Tei­len, die oben in der 3D-Ansicht semi­trans­pa­rent dar­ge­stellt sind. Durch einen klei­nen Trick wird eine enge ther­mi­sche Kopp­lung des Oszil­la­tors zu dem Tem­pe­ra­tur­sen­sor sicher­ge­stellt. Der Tem­pe­ra­tur­sen­sor im SOIC8-Gehäu­se ist über einer recht­ecki­gen Aus­frä­sung in der Lei­ter­plat­te mon­tiert, in den der Quarz­os­zil­la­tor manu­ell von der ande­ren Sei­te mon­tiert und über vier Dräh­te ange­schlos­sen wird. Hier die 3D-Nahan­sicht von oben und unten ohne das PVC-Gehäuse:

Der Fre­quenz­zäh­ler wird mit 3.3 V betrie­ben, weil das CPLD nicht mehr ver­trägt. Die­se Ver­sor­gungs­span­nung wird mit einem klei­nen Line­ar­reg­ler aus den 5 V vom USB Bus erzeugt. Der Micro­chip-Pro­zes­sor (ehe­mals Atmel) ATMEGA644 kom­mu­ni­ziert über sei­nen UART und das FTDI-Board mit dem PC und über Port-Pins per Bit-Ban­ging mit der Logik im CPLD. Das CPLD-Inter­face ist selbst­ge­strickt und folgt kei­nem Stan­dard, zum Host wird wie­der das Mod­bus Pro­to­koll ver­wen­det. Die Logik im CPLD ent­spricht im wesent­li­chen dem der vor­he­ri­gen Ver­si­on, nur das Pin­out ist geän­dert und hier sind kei­ne LEDs und kein DIP-Schal­ter mehr ange­schlos­sen. Die CPU hat kei­nen eige­nen Quarz mehr, son­dern sie wird mit dem auf 10 MHz her­un­ter­ge­teil­ten Takt des 100 MHz Quarz­os­zil­la­tors betrieben.

Die Takt­ein­gän­ge clk1 und clk2 sind wie in der vori­gen Ver­si­on mit 50 Ω Wider­stän­den ter­mi­niert und über einen ein­stu­fi­gen AC-gekop­pel­ten Tran­si­stor­ver­stär­ker in Emit­ter­schal­tung an das CPLD ange­schlos­sen. Um auch nied­ri­ge Fre­quen­zen bis hin zu DC zu unter­stüt­zen, wur­de der clk3-Ein­gang vor­ge­se­hen. Er ist über einen 100 Ω Wider­stand direkt an das CPLD ange­schlos­sen, das zum Schutz noch zwei Schott­ky-Dioden gegen GND und VCC geschal­tet hat. Die etwas selt­sam anmu­ten­de Aus­füh­rung mit Dop­pel­di­oden ist der zum Design­zeit­punkt ein­zig in der Bastel­ki­ste ver­füg­ba­ren Vari­an­te BAS70-05W geschul­det. Inzwi­schen ist auch die BAV99W-Vari­an­te in hin­rei­chen­den Stück­zah­len ein­ge­la­gert, die dann bei einem even­tu­el­len Rede­sign ein­ge­setzt würde.

Obe­rer und unte­rer Rand der Pla­ti­ne sind beid­sei­tig vom Löt­stopp­lack befreit. Die Kup­fer­flä­chen sind jeweils an GND ange­schlos­sen und stel­len so einen Kon­takt zum Gehäu­se her. Das ist bei einem Alu­mi­ni­um­ge­häu­se natur­ge­mäß unzu­ver­läs­sig, daher sind die zwei Flach­stecker TP4 und TP5 vor­ge­se­hen, über die zusätz­lich ein Mas­se­ka­bel mit dem Gehäu­se ver­bun­den wer­den kann.

Hier noch ein paar Fotos des fer­ti­gen Gerätes:

Die SMA-Buch­sen an der Vor­der- und Rück­sei­te wer­den über kur­ze RG174-Koax-Kabel an die Lei­ter­plat­te ange­schlos­sen. Weil die Buch­se des USB-RS232-Kon­ver­ters etwa 1 mm von der Rück­wand ent­fernt ist, die außer­dem 2 mm dick ist, reich­te ein klei­ner Durch­bruch lei­der nicht aus. Daher muss­te er lei­der so groß gefräst wer­den, daß der gesam­te Stecker hin­ein­passt. Neben dem clk3-Ein­gang und der USB-Buch­se ist auf der Rück­sei­te auch noch eine Flü­gel­schrau­be zur Erdung des Gerä­tes ange­bracht. Das wird nor­ma­ler­wei­se nicht nötig sein, könn­te aber bei grö­ße­ren HF-Lei­stun­gen in der Umge­bung hilf­reich sein.

Fre­quenz­zäh­ler, Teil 2

Nach­dem ich die letz­ten Wochen damit ver­dad­delt habe, mei­nen neu­en Note­book soweit her­zu­rich­ten, daß er wie­der mit allen benö­tig­ten Pro­gram­men rund läuft, kom­me ich nun end­lich dazu, das PC-Inter­face zum Fre­quenz­zäh­ler zu beschreiben.

Wie bereits im ersten Teil beschrie­ben, benutzt der Fre­quenz­zäh­ler wie­der ein RS485-Inter­face zur Kom­mu­ni­ka­ti­on mit dem PC. Das ist ein sehr stör­si­che­res Inter­face, wenn man län­ge­re Strecken bis über 1 km zuver­läs­sig über­win­den muß. Daher habe ich es für die Kom­mu­ni­ka­ti­on mit dem Anten­nen­um­schal­ter und dem Anten­nen­tu­ner ver­wen­det, die immer­hin 20 m vom Shack ent­fernt und höhe­ren HF-Lei­stun­gen aus­ge­setzt sind. Das ist mit USB nicht mehr ohne wei­te­res zu machen. In die­sem Fall ist RS485 aber eher sub­op­ti­mal, weil der Zäh­ler sowie­so nahe am PC betrie­ben wird und weil immer einen USB-RS485-Umset­zer benö­tigt wird. Daher pla­ne ich jetzt schon ein Rede­sign, das dann direkt einen FTDI USB-RS232-Umwand­ler beinhal­ten wird. Die ent­spre­chen­den Modu­le sind ja für ein bis zwei Euro zu kau­fen und auch in dem USB-RS485-Umset­zer ver­baut. An der Soft­ware wird sich daher nichts ändern.

Die PC-Bedie­ner­ober­flä­che

Die Bedie­ner­soft­ware ist wie auch die für den Anten­nen­um­schal­ter und Tuner wie­der für einen Win­dows-PC geschrie­ben. Der Fre­quenz­zäh­ler mel­det sich über den USB-RS485-Umset­zer als COM-Schnitt­stel­le an. Als Inter­face-Pro­to­koll ist auch hier wie­der der Mod­Bus implementiert.

Der nach­fol­gen­de Screen­shot zeigt die Benut­zer­ober­flä­che des Frequenzzählers:

UI Frequenzzähler
Benut­zer­ober­flä­che des Frequenzzählers

Das Haupt­fen­ster oben zeigt die gemes­se­ne Fre­quenz in Hz, die ande­ren Fen­ster und Steu­er­ele­men­te die­nen der Kon­fi­gu­ra­ti­on, die nach­fol­gend kurz beschrie­ben wer­den soll. Es wird übri­gens die euro­päi­sche Zah­len­no­ta­ti­on ange­wen­det, nach der ein Kom­ma als Dezi­mal­trenn­zei­chen und ein Punkt als Tau­sen­der­trenn­zei­chen ver­wen­det wird.

Fref

Fref ist die tat­säch­li­che Refe­renz­fre­quenz in Hertz. Sie kann manu­ell in die­sem Fen­ster ein­ge­ge­ben wer­den. Wenn der TCXO ver­wen­det wird, wird die Refe­renz­fre­quenz aus der aktu­ell gemes­se­nen Tem­pe­ra­tur und einer hin­ter­leg­ten Tem­pe­ra­tur­kur­ve errechnet.

Fref Pre­cis­i­on

Hier wird die Genau­ig­keit der Refe­renz­fre­quenz in ppb (parts per bil­li­on = 10-9) ange­ge­ben. Dar­aus wird nach der Mes­sung die Prä­zi­si­on des Meß­er­geb­nis­ses berech­net. Die Genau­ig­keit der übli­chen Quar­ze und Quarz­os­zil­la­to­ren liegt in der Grö­ßen­ord­nung von 10.000 ppb (= 10 ppm) und die Genau­ig­keit eines GPSDO ist bes­ser als 1 ppb.

Timer Rel­oad und Gate Time

Hier wird Anzahl der Tak­te zur Bestim­mung der Tor­zeit oder direkt die Tor­zeit in Mil­li­se­kun­den ein­ge­tra­gen. Bei Ände­rung eines die­ser Fel­der wird auto­ma­tisch der ande­re Wert aus Fref und der Betriebs­art (nor­mal oder revers) errechnet.

Coun­ter Temperature

Hier wird die momen­ta­ne Tem­pe­ra­tur des Fre­quenz­zäh­lers ange­zeigt. Der ver­wen­de­te Sen­sor hat ein Genau­ig­keit von 0.5 K und eine Auf­lö­sung von 116 K. Er ist aber im jet­zi­gen Modul so weit vom ein­ge­bau­ten Quarz­os­zil­la­tor ent­fernt, daß die Mes­sung der Oszil­la­tor­tem­pe­ra­tur ziem­lich unge­nau ist.

Reso­lu­ti­on und Precision

In die­sen Fel­dern wird nach der Mes­sung die momen­ta­ne Fre­quenz­auf­lö­sung und die maxi­ma­le Meß­ab­wei­chung von der tat­säch­li­chen Fre­quenz, also die Genau­ig­keit der Meß­er­geb­nis­ses, ange­zeigt. Die Fre­quenz­auf­lö­sung hängt von den Ein­stel­lun­gen (z.B. der Tor­zeit) ab, wäh­rend in die Prä­zi­si­on auch noch die Genau­ig­keit der Refe­renz­fre­quenz ein­geht. Die Prä­zi­si­on ist eine Kom­bi­na­ti­on aus dem in „Fref Pre­cis­i­on“ eige­ge­be­nen Wert und der Fre­quenz­auf­lö­sung. Daher ist die Prä­zi­si­on immer schlech­ter als jeder ein­zel­ne die­ser Werte.

fref und fcheck Radiobuttons

Mit den fref- und fcheck-Aus­wahl­knöp­fen wird die Refe­renz­fre­quenz und die zu mes­sen­de Fre­quenz aus­ge­wählt. clk0 ist der Oszil­la­tor des CPU-Moduls, clk1 und clk2 sind die SMA-Buch­sen mit nach­fol­gen­dem Vor­ver­stär­ker und clk3 ist die Fre­quenz des ein­ge­bau­ten 100 MHz Quarz­os­zil­la­tors. Ein exter­ner Refe­renz­os­zil­la­tor, z.B. ein GPSDO, wird an clk1 oder clk2 ange­schlos­sen, an den ver­blei­ben­den Ein­gang kommt die zu mes­sen­de Frequenz.

Pre­s­ca­ler

Mit dem Pre­s­ca­ler wird der Ein­gangs­tei­ler aus­ge­wählt, der den mit fcheck aus­ge­wähl­ten Takt durch 1, 2, 4 oder 8 teilt. Damit muß sicher­ge­stellt wer­den, daß fcheck klei­ner als fref/2 ist.

TCXO

Wird hier ein Haken gesetzt, dann ver­wen­det der Fre­quenz­zäh­ler den Oszil­la­tor des CPU-Moduls an clk0 oder den ein­ge­bau­ten Quarz­os­zil­la­tor an clk3 als Refe­renz und errech­net sei­ne Fre­quenz anhand der momen­ta­nen Tem­pe­ra­tur. Des­sen Fre­quenz­gang über der Tem­pe­ra­tur muß vor­her aus­ge­mes­sen wor­den sein, wie in dem Bei­trag zur Meß­da­ten­ana­ly­se mit Libre­Of­fice beschrie­ben wurde.

Revers

Wird hier ein Haken gesetzt, arbei­tet der Fre­quenz­zäh­ler im Revers­be­trieb. Statt fref bestimmt dann fcheck die Tor­zeit und der Zäh­ler zählt die Anzahl der fref-Tak­te wäh­rend die­ser Zeit.

Con­ti­nuous

Ein Haken in die­sem Feld führt dazu, daß der Zäh­ler kon­ti­nu­ier­lich zählt, statt nach einer Mes­sung aufzuhören.

Open Log

Mit die­ser Schalt­flä­che kann eine Log­da­tei geöff­net wer­den, in der im CSV-For­mat die Meß­wer­te abge­legt wer­den. Falls die Datei noch nicht exi­stiert, wird sie neu ange­legt, anson­sten fortgeschrieben.

Trig­ger Measurement

Mit die­ser Schalt­flä­che wird die Mes­sung gestar­tet und im Fal­le der kon­ti­nu­ier­li­chen Mes­sung auch wie­der gestoppt.

Remo­te Device

Hier wird ein optio­na­les, am RS485-Bus ange­schlos­se­nes Device adres­siert, des­sen Betriebs­tem­pe­ra­tur hier ange­zeigt und gelog­ged wird. Zu Test­zwecken kann hier auch die Device-ID des Fre­quenz­zäh­lers ange­ge­ben wer­den. Damit wird auch in die­sem Feld noch­mal die­sel­be Tem­pe­ra­tur ange­zeigt, wie unter Coun­ter Temperature.

Bei­spiel­mes­sung

In der ersten Mes­sung wird die Fre­quenz des ein­ge­bau­ten 100 MHz Quarz­os­zil­la­tors mit einem GPSDO als Refe­renz gemessen.

XO via GPSDO
Fre­quenz des ein­ge­bau­ten Quarz­os­zil­la­tors mit GPSDO gemessen.

Der Quarz­os­zil­la­tor ist an clk3 ange­schlos­sen, der GPSDO an clk1. Es wur­de eine Tor­zeit von 1 Sekun­de gewählt und der Vor­tei­ler teilt durch 4, damit die zu mes­sen­de Fre­quenz nied­ri­ger als die hal­be Refe­renz­fre­quenz ist. Dar­aus ergibt sich eine Auf­lö­sung von 4.0 Hertz. Für höhe­re Auf­lö­sun­gen muß die Tor­zeit ver­län­gert wer­den. Wegen der hohen Genau­ig­keit des GPSDO von bes­ser als 1 ppm, wird die Prä­zi­si­on des Meß­er­geb­nis­ses von der Auf­lö­sung dominiert.

Die näch­ste Mes­sung mißt die Fre­quenz des Oszil­la­tors auf dem CPU-Board (clk0), die nomi­nal 8 MHz beträgt.

CPU via GPSDO
Fre­quenz des CPU Tak­tes mit GPSDO gemessen.

Da die Refe­renz­fre­quenz weit­aus höher ist, als die zu mes­sen­de Fre­quenz, kann der Vor­tei­ler auf 1 blei­ben. Auch hier ist die Auf­lö­sung wie­der ein Hertz, weil die Tor­zeit auf eine Sekun­de ein­ge­stellt wurde.

Stellt man eine Tor­zeit von 40 Sekun­den ein, dann ver­bes­sert sich die Auf­lö­sung auf 25 mHz und die Genau­ig­keit auf 33 mHz, wie der nach­fol­gen­de Screen­shot zeigt:

CPU via GPSDO
Fre­quenz des CPU Tak­tes mit GPSDO gemes­sen. Tor­zeit 40 Sekunden.

Lei­der muß man dabei auch 40 Sekun­den auf das Ergeb­nis war­ten. Man igno­rie­re hier den Timer Rel­oad Wert. Der wird lei­der als vor­zei­chen­be­haf­te­te 32-bit Zahl dargestellt.

Damit man bei nied­ri­gen zu mes­sen­den Fre­quen­zen auch bei kur­zer Meß­dau­er auf ein gut auf­ge­lö­stes Ergeb­nis kommt, benutzt man den Revers­be­trieb. Dabei wird die Dau­er der Refe­renz­pe­ri­ode mit dem hohen Refe­renz­takt aus­ge­mes­sen. Bei 100 MHz Refe­renz­fre­quenz erreicht man also eine Auf­lö­sung von 10 ns.

Das hier gezeig­te Meß­er­geb­nis wur­de im Revers­be­trieb bei einer Sekun­de Meß­dau­er erzielt. Es erreicht eine Genau­ig­keit von 88 mHz.

CPU via GPSDO
Fre­quenz des CPU Tak­tes mit GPSDO gemes­sen. Revers­be­trieb, Tor­zeit 1 Sekunde.

Durch Ver­län­gern der Meß­dau­er läßt sich auch im Revers­be­trieb die Genau­ig­keit wei­ter stei­gern. Bei 10 Sekun­den Meß­dau­er erreicht man eine Genau­ig­keit von 16 mHz.

CPU via GPSDO
Fre­quenz des CPU Tak­tes mit GPSDO gemes­sen. Revers­be­trieb, Tor­zeit 10 Sekunden.

Ver­wen­det man statt dem hoch­prä­zi­sen GPSDO den auf dem Fre­quenz­zäh­ler ver­bau­ten 100 MHz Oszil­la­tor als Refe­renz, dann ist die Genau­ig­keit sehr viel geringer.

GPSDO via XO
Fre­quenz des GPSDO mit ein­ge­bau­tem XO gemessen.

Hier ist der GPSDO auf den Meß­ein­gang geschal­tet, der für Ama­teur­zwecke exakt 100 MHz Aus­gangs­fre­quenz hat. Die Mes­sung weicht also um 676 Hz von der tat­säch­li­chen Fre­quenz ab und liegt damit inner­halb der durch die 10 ppm ange­ge­be­nen Feh­ler­gren­zen, die eine Abwei­chung bis 1004 Hz erlau­ben würden.

Wie oben schon beschrie­ben, kann der ein­ge­bau­te Oszil­la­tor per Soft­ware tem­pe­ra­tur­kom­pen­siert wer­den, indem man einen Haken bei TCXO setzt. Dadurch sinkt die Meß­ab­wei­chung auf etwa 1 Hz, wie der nach­fol­gen­de Screen­shot zeigt.

GPSDO via TCXO
Fre­quenz des GPSDO mit ein­ge­bau­tem TCXO gemessen.

Für schnel­le Mes­sun­gen kann man so also auf den GPSDO ver­zich­ten und den­noch sehr genau messen.

Anhang

Nach­fol­gend wer­den die mathe­ma­ti­schen For­meln zum Berech­nen der gemes­se­nen Fre­quenz und der jewei­li­gen Auf­lö­sung doku­men­tiert. Hier noch­mal als Refe­renz das Block­dia­gramm des Frequenzzählers:

Blockdiagramm des Frequenzzählers
Block­dia­gramm des Frequenzzählers

In den unten doku­men­tier­ten For­meln wer­den fol­gen­de Bezeich­ner verwendet:

cntr: Counter-Register, 32 bit
prsc: selprsc[1:0], 2 bit
fref: f_ref, Referenzfrequenz
rld: Timer reload value, 32 bit
gt: gate time (Torzeit) [s]
Δ(f): Frequenzauflösung [Hz]

Nor­mal­be­trieb

      rld
gt = ────
     fref


       gt ⋅ fcheck
cntr = ───────────
          prsc


         cntr ⋅ prsc ⋅ fref      cntr ⋅ prsc
fcheck = ────────────────── = ───────────
                 rld                 gt


       prsc ⋅ fref     prsc
Δ(f) = ─────────── = ────
           rel          gt

Revers­be­trieb

     prsc ⋅ rld
gt = ──────────
       fcheck


cntr = gt ⋅ fref


         rld ⋅ prsc ⋅ fref      rld ⋅ prsc
fcheck = ───────────────── = ──────────
               cntr                gt




            ⎛ rld ⋅ prsc ⋅ fref   ⎞
Δ(f) = abs    ─────────────────
            ⎝  cntr ⋅ (cntr + 1)  ⎠

Fre­quenz­zäh­ler, Teil 1

Hier kommt nun der erste Teil der Beschrei­bung des Fre­quenz­zäh­lers. Hier soll die Hard­ware bespro­chen wer­den, inklu­si­ve der Logik im ver­wen­de­ten CPLD und der Soft­ware des Controllers.

Eine kur­ze Erwäh­nung fand der Zäh­ler schon vor ein paar Wochen in der Über­sicht der aktu­el­len Pro­jek­te. Dort fin­det sich auch der Schalt­plan und die 3D-Ansicht, bei­des hier noch­mal zum direk­ten Zugriff:

Die Hard­ware

Der Fre­quenz­zäh­ler basiert wie­der auf dem ATME­GA644-CPU-Board mit RS485-Schnitt­stel­le, das sich inzwi­schen in unter­schied­li­chen Pro­jek­ten bewährt hat. Die­ses CPU-Board kom­mu­ni­ziert über eine syn­chro­ne seri­el­le Schnitt­stel­le mit dem in einem EPM240T100 imple­men­tier­ten Fre­quenz­zäh­ler. Die benö­tig­te Geschwin­dig­keit ist unkri­tisch und daher wird die­se Kom­mu­ni­ka­ti­on auf dem CPU-Board über I/O‑Pins imple­men­tiert („bit-ban­ging“). Da der EPM240 mit 3,3 V betrie­ben wer­den muß und kei­ne 5‑V-tole­ran­ten I/O‑Pins hat, wird auch das CPU-Board mit 3,3 V betrie­ben. Das schränkt die Betriebs­fre­quenz auf maxi­mal 10 MHz ein. Wegen der gerin­gen Anfor­de­run­gen an die Geschwin­dig­keit, wur­de ein 8 MHz Quarz eingebaut.

Der Schalt­plan zeigt unten die Span­nungs­ver­sor­gung und die Kon­troll-LEDs, dar­über zwei gleich­ar­ti­ge Breit­band-Ver­stär­ker in klas­si­scher Emit­ter-Schal­tung für den Ein­gangs­takt. Sie sind ein­gangs­sei­tig mit 50 Ω abge­schlos­sen und heben den Pegel von etwa 6 dBm (8 mA Trei­ber­stär­ke) auf den für die CPLD-Takt­ein­gän­ge benö­tig­ten Hub von 3.3 V an. Wegen der Schmitt-Trig­ger-Ein­gän­ge darf es auch etwas weni­ger sein. Acht LEDs und vier DIP-Schal­ter kön­nen optio­nal zur Sta­tus­an­zei­ge und zur Kon­fi­gu­ra­ti­on ver­wen­det wer­den. Außer­dem ist ein 100 MHz Quarz­os­zil­la­tor ein­ge­baut sowie jeweils eine JTAG-Pro­gram­mier­schnitt­stel­le für das CPU-Board und das CPLD.

Funk­ti­ons­wei­se

Zur digi­ta­len Bestim­mung einer Fre­quenz gibt es prin­zi­pi­ell zwei Metho­den: man zählt die Anzahl der Tak­te wäh­rend eines mög­lichst genau bekann­ten Inter­valls oder man misst die Zeit­dau­er zwi­schen zwei oder meh­re­ren Tak­ten. Die erste Metho­de wird nach­fol­gend als Nor­mal­be­trieb bezeich­net, die zwei­te Metho­de als Revers­be­trieb. Bei­de Ver­fah­ren benö­ti­gen eine mög­lichst prä­zi­se Referenzfrequenz.

Prin­zi­pi­ell sind bei­de Betriebs­ar­ten gleich­wer­tig, sie unter­schei­den sich aber in der Dau­er der Mes­sung. Die Auf­lö­sung im Nor­mal­be­trieb ist umge­kehrt pro­por­tio­nal zum Mess­in­ter­vall. Um eine Auf­lö­sung von 1 Hz zu errei­chen, muß man eine Sekun­de lang mes­sen, bei 0,1 Hz Auf­lö­sung schon zehn Sekun­den. Den 32 kHz Takt einer Uhr kann man auf die­se Wei­se in einer Sekun­de also nur auf etwa 30 ppm genau mes­sen (2-15).

Im Revers­be­trieb teilt man den Takt der Uhr bei­spiels­wei­se durch 215 und bekommt so auch ein Inter­vall von einer Sekun­de. Zählt man in der Zeit die Tak­te einer 100 MHz Refe­renz, dann erreicht man auf eine Auf­lö­sung von 10 ns, was 0,01 ppm = 10 ppb entspricht.

Kurz zusam­men­ge­fasst: damit das Mess­in­ter­vall kurz gehal­ten wer­den kann, wählt man den Nor­mal­be­trieb am besten bei hohen Fre­quen­zen im Ver­gleich zur Refe­renz­fre­quenz, den Revers­be­trieb bei nied­ri­gen Frequenzen.

Das CPLD

Ein CPLD ist für die­se Art von Auf­ga­ben prä­de­sti­niert. Es besteht aus einer Anzahl Logik-Ele­men­te, in die­sem Fall 240 Blöcke, die weit­ge­hend frei ver­schal­tet wer­den kön­nen und über schnel­le Ver­bin­dun­gen zu den Pins ver­fü­gen. Anders als die mei­sten FPGAs, haben CPLDs nicht­flüch­ti­ge Spei­cher und müs­sen daher nicht bei jeden System­start neu kon­fi­gu­riert wer­den. Man benö­tigt aller­dings ein preis­wer­tes Werk­zeug, in die­sem (Intel/Al­te­ra-) Fall den soge­nann­ten USB-Bla­ster, um das CPLD in der Schal­tung zu pro­gram­mie­ren. Das kann man auch mehr­fach machen, aber die Anzahl der Pro­gram­mier­zy­klen ist auf etwa 100 beschränkt, wäh­rend der Flash-Spei­cher einer CPU nor­ma­ler­wei­se auch 10.000 bis 100.000-mal pro­gram­miert wer­den kann.

Die Logik wird in einer Pro­gram­mier­spra­che ähn­lich einer Soft­ware-Pro­gram­mier­spra­che ein­ge­ge­ben. Zwei Spra­chen haben sich eta­bliert, VHDL und Ver­i­log. Ver­i­log hat Ele­men­te der Pro­gram­mier­spra­che „C“ und ist für jeman­den, der die­se Spra­che kennt, rela­tiv leicht zu erler­nen. Der Unter­schied ist frei­lich, daß Soft­ware im wesent­li­chen sequen­zi­ell abge­ar­bei­tet wird, wäh­rend in Hard­ware vie­les gleich­zei­tig pas­siert. Wie auch bei der Soft­ware­pro­gram­mie­rung benö­tigt man Werk­zeu­ge, die den erstell­ten Quell­code in ein Binär­for­mat umwan­deln, das man in das CPLD laden kann. Die­se Werk­zeu­ge stellt der Her­stel­ler der Logik­bau­stei­ne, gege­be­nen­falls in einer abge­speck­ten Ver­si­on, kosten­los zur Ver­fü­gung. Im Fal­le Intels ist das die „Quartus“-Entwicklungsumgebung, die sogar eine ange­pass­te Ver­si­on des Men­tor Model­Sim Simu­la­tors ent­hält, der in der Voll­ver­si­on auch in der pro­fes­sio­nel­len Chip-Ent­wick­lung ver­wen­det wird.

Block­dia­gramm des Frequenzzählers

Genau wie beim Ent­wurf einer dis­kret auf­ge­bau­ten Schal­tung, soll­te man sich auch bei einem CPLD (oder FPGA) ein Block­dia­gramm erstel­len, das die Funk­ti­ons­blöcke dar­stellt. Die kön­nen dann bei Bedarf hier­ar­chisch wei­ter ver­fei­nert wer­den, was aber bei dem rela­tiv ein­fa­chen Zäh­ler hier nicht not­wen­dig ist.

Blockdiagramm des Frequenzzählers
Block­dia­gramm des Frequenzzählers

Die­ses Dia­gramm zeigt nur die Logik des Zäh­lers, nicht das CPU-Inter­face. Zunächst gibt es die vier Takt­ein­gän­ge clk0 .. clk3, die über den Ein­gangs­mul­ti­ple­xer ver­teilt wer­den. clk1 und clk2 sind über die oben beschrie­be­nen Vor­ver­stär­ker mit den bei­den SMA-Buch­sen ver­bun­den und für den Refe­renz­takt und die zu mes­sen­de Fre­quenz vor­ge­se­hen. clk0 ist fest mit dem CPU-Takt ver­bun­den und clk3 wird von dem 100 MHz Quarz­os­zil­la­tor betrieben.

f_check ist die zu mes­sen­de Fre­quenz, die über einen optio­na­len Vor­tei­ler auf die Refe­renz­fre­quenz f_ref syn­chro­ni­siert wird. Daher muß die Refe­renz­fre­quenz min­de­stens dop­pelt so hoch sein, wie die ggf. her­un­ter­ge­teil­te zu mes­sen­de Fre­quenz. Der Ein­gangs­mul­ti­ple­xer bestimmt, wel­cher der vier Takt­ein­gän­ge auf f_check und f_ref geschal­tet wird. Es gibt hier kei­ne Ein­schrän­kun­gen, zu Test­zwecken kann auch der­sel­be Takt auf bei­de Signa­le geschal­tet werden.

Die Refe­renz­fre­quenz wird übli­cher­wei­se in der Grö­ßen­ord­nung von 50 bis 100 MHz lie­gen und wenn die zu mes­sen­de Fre­quenz mehr als halb so hoch ist, muß sie mit dem Pre­s­ca­ler her­un­ter­ge­teilt werden.

Der eigent­li­che Zäh­ler besteht aus einem 32-bit brei­ten Regi­ster, des­sen Inhalt von der CPU ein­ge­le­sen wer­den kann, sinn­vol­ler­wei­se nach­dem die Mes­sung been­det ist und der Wert sich nicht mehr ändert. Der eben­falls 32-bit brei­te pro­gram­mier­ba­re Tei­ler wird beim Start des Meß­zy­klus mit dem Wert des Timer-Rel­oad-Regi­sters gela­den und anschlie­ßend her­un­ter­ge­zählt. Er bestimmt damit die Tor­zeit, also wie lan­ge der Zäh­ler zäh­len soll. Der Meß­zy­klus wird been­det, sobald die­ser Timer null erreicht. Ein kom­plet­ter Meß­zy­klus besteht aus der Kon­fi­gu­ra­ti­on des Fre­quenz­zäh­lers (Wahl der Takt­ein­gän­ge, der Betriebs­art und Ein­stel­lung des Vor­tei­lers), Set­zen des Rel­oad-Regi­sters und Trig­gern der Mes­sung, womit gleich­zei­tig der Zäh­ler auf null gesetzt wird. Ein Sta­tus­flag zeigt an, wenn der Meß­zy­klus been­det ist und das Ergeb­nis aus­ge­le­sen wer­den kann.

Timer, Zäh­ler und Steu­er­lo­gik lie­gen in der Clock-Domä­ne des aus­ge­wähl­ten Refe­renz­si­gnals, wäh­rend die von der CPU geschrie­be­nen Kon­fi­gu­ra­ti­ons- und Sta­tus-Regi­ster in der Clock-Domä­ne des CPU-Boards lie­gen (clk0). Die Simu­la­ti­on ergibt eine maxi­ma­le Ein­gangs­fre­quenz von 120 MHz für die Takt­ein­gän­ge des Fre­quenz­zäh­lers und über 50 MHz für das CPU-Inter­face. Bei Betrieb mit 100 MHz ist man also auf der siche­ren Sei­te und die 32-bit Zäh­ler kön­nen dann über 80 Sekun­den zäh­len, ohne überzulaufen.

Im Nor­mal­be­trieb wird die Tor­zeit von der Refe­renz­fre­quenz bestimmt und die Anzahl der stei­gen­den Flan­ken von f_check wird in die­sem Inter­vall gezählt. Im Revers­be­trieb bestimmt f_check die Tor­zeit wäh­rend­des­sen die Anzahl von f_ref Flan­ken gezählt wird.

Ver­i­log Code

Hier ist nun der Ver­i­log-Code des Fre­quenz­zäh­lers und die not­wen­di­gen Pro­jekt­da­tei­en für die Quar­tus-Ent­wick­lungs­um­ge­bung. Gege­be­nen­falls müs­sen Datei­pfa­de ange­passt werden.

Das eigent­li­che Design steckt in der Datei Datei FreqCntr.v, die hin­rei­chend gut kom­men­tiert sein soll­te. Zu beach­ten ist, daß die ursprüng­lich geplan­te Para­me­tri­sie­rung über die Para­me­ter COUNTERW, TIMERW und IOREGW nicht kon­se­quent ver­folgt wur­de. Sie soll­ten auf ihren Default-Wer­ten bleiben.

FreqCntr_EPM240.v instan­zi­iert den Fre­quenz­zäh­ler für das EPM240 CPLD auf dem Fre­quenz­zäh­ler-Board. Die bei­den wei­te­ren Ver­i­log Datei­en FreqCntr_tb_Counter.v und FreqCntr_tb_Serial_IO.v ent­hal­ten die Model­Sim-Test­be­n­ches für den Zäh­ler und die seri­el­le CPU-Schnitt­stel­le. Die zuge­hö­ri­gen Skrip­te tb_Counter.do und tb_Serial_IO.do wer­den in Model­Sim aus­ge­führt und star­ten den jewei­li­gen Test.

Nach­trag: Quar­tus Prime V21.1

Nach­dem ich mir vor ein paar Wochen einen neu­en Note­book gelei­stet habe (der alte war tat­säch­lich mitt­ler­wei­le neun Jah­re alt), habe ich die jeweils neue­sten Ver­sio­nen der Ent­wick­lungs­um­ge­bun­gen instal­liert, für CPLDs und FPGAs von Intel (frü­her Alte­ra) also Quar­tus V21.1. Die­ses Paket beinhal­tet nicht mehr Model­sim, son­dern des­sen Nach­fol­ger Que­sta (bei­de von Men­tor). Die Bedie­ner­ober­flä­che ist prak­tisch gleich geblie­ben, aber es ist nun eine 64-bit Ver­si­on und die Simu­la­ti­ons­ge­schwin­dig­keit ist beein­druckend (was teil­wei­se auch am neu­en Note­book lie­gen könn­te). Lei­der benö­tigt die­se Ver­si­on eine zeit­lich auf ein Jahr befri­ste­te Lizenz, die aber kosten­los ist und danach auch ver­län­gert wer­den kann.

Fol­gen­des ist zu beach­ten: die alten mit Model­sim erstell­ten Pro­jek­te soll­ten durch neue mit Que­sta erstell­te Pro­jek­te ersetzt wer­den. Die alten Pro­jekt­da­tei­en ent­hal­ten Abhän­gig­kei­ten, die mit Que­sta nicht mehr funk­tio­nie­ren. Außer­dem muß das „vsim“-Kommando einen Para­me­ter für den Opti­mi­zer ent­hal­ten (voptargs=“+acc=prn“), damit die Namen der Ports (p), Regi­ster (r) und Net­ze (n) als Debug­in­for­ma­tio­nen erhal­ten blei­ben. Das voll­stän­di­ge vsim-Kom­man­do lau­tet also bei­spiels­wei­se folgendermaßen:

vsim <testbench> -voptargs="+acc=prn" -t 1ns

Das soll­te dann in den Test­be­n­ches tb_*.do ent­spre­chend geän­dert werden.

ATME­GA644-Code

Die Soft­ware, die auf dem ATMEGA644 aus­ge­führt wird, kann hier als Refe­renz her­un­ter­ge­la­den werden.

Ich ver­wen­de Atmel Stu­dio 7.0 als Ent­wick­lungs­um­ge­bung, habe aber kei­ne Pro­jekt­da­tei­en dazu­ge­fügt. Ver­mut­lich hat sowie­so jeder sei­ne eige­ne Phi­lo­so­phie bezüg­lich der Pfa­de. Das 7z-Archiv ent­hält auch eine PDF-Datei mit wei­te­ren Beschreibungen.

Im kom­men­den zwei­ten Teil soll die PC-Soft­ware zur Bedie­nung des Fre­quenz­zäh­lers beschrie­ben werden.