QRV auf dem 12-m-Band

Wie hier und hier schon ange­kün­digt, habe ich nun eine Dipol­an­ten­ne nach dem Lehr­buch auf­ge­baut. Die Abmes­sun­gen des Bal­kons erlaub­ten lei­der nur eine Spann­wei­te von zwei mal 2,67 m, also ins­ge­samt 5,34 m, zuzüg­lich der Ein­kopp­lung zwi­schen den bei­den Dipolhälften.

Wie die Simu­la­ti­ons­er­geb­nis­se zei­gen, ist 4nec2 der Mei­nung, daß der Dipol bei 27,1 MHz reso­nant sei. Nach­fol­gend das zuge­hö­ri­ge Smith-Chart:

Simu­lier­tes Smith-Dia­gramm des Dipols

Von die­ser Aus­gangs­la­ge woll­te ich eigent­lich durch suk­zes­si­ves Kür­zen das 10-m-Band errei­chen. 4nec2 geht von idea­len Bedin­gun­gen und einer frei auf­ge­häng­ten Anten­ne in 8 m Höhe aus. Tat­säch­lich hängt der Dipol aber 3 m über dem Bal­kon und ist auf der einen Sei­te sehr nah an der Dach­rin­ne, auf der ande­ren Sei­te sehr nah am geer­de­ten Anten­nen­mast, also weit weg von den Emp­feh­lun­gen aus dem Lehr­buch. Daher ver­wun­dert es nicht, daß die gemes­se­ne Impe­danz ganz anders aussieht:

Gemes­se­ne Impe­danz des rea­len 5,34 m lan­gen Dipols

Daß der Impe­danz­ver­lauf gegen­über der Simu­la­ti­on um den Mit­tel­punkt des Smith-Charts nach unten gedreht ist, soll­te hier nicht irri­tie­ren: zwi­schen der Ein­spei­sung und dem Dipol hängt die­ser Balun. Er trans­for­miert die Impe­danz bereits signi­fi­kant. Inter­es­san­ter ist die Reso­nanz­fre­quenz, die zufäl­li­ger­wei­se um die 25 MHz liegt, also im 12-m-Band. Das liegt etwa 2 MHz unter der simu­lier­ten Reso­nanz­fre­quenz und kommt uner­war­tet. Ursa­che ist sicher­lich die nicht idea­le Umge­bung, in der der Dipol auf­ge­hängt ist. Damit kann man doch mal ver­su­chen, auf 12 m QRV zu werden.

Aber zunächst will ich mal den Effekt der bei­den Ver­län­ge­rungs­spu­len aus­te­sten. Sie waren ja dazu gedacht, die etwas zu kur­ze Anten­ne elek­trisch zu ver­län­gern und gleich­zei­tig die Impe­danz von unge­fähr 70 Ω auf unge­fähr 50 Ω zu trans­for­mie­ren. Die­se Ver­län­ge­rungs­spu­len kön­nen mit zwei Schie­be­schal­tern zu Meß­zwecken kurz­ge­schlos­sen bzw. geöff­net und somit in Serie zu den bei­den Dipol­hälf­ten geschal­tet wer­den. Da die Reso­nanz mit ein­ge­schal­te­ten Ver­län­ge­rungs­spu­len die oben benutz­ten unte­re Fre­quenz von 22 MHz unter­schrei­tet, ver­wen­det die nach­fol­gen­de Mes­sung den wei­ten Fre­quenz­be­reich von 0 MHz bis 100 MHz.

Gemes­se­ne Impe­danz des Dipols mit Verlängerungsspulen

Die Ver­län­ge­rungs­spu­len zie­hen die Reso­nanz des Dipols also auf etwa 22 MHz her­un­ter, wobei das 15-m-Band auch gera­de noch inner­halb des SWR=3 Krei­ses liegt und damit vom ein­ge­bau­ten Anten­nen­tu­ner noch erfasst wird. Mit ein­ge­schal­te­ten Spu­len kann der Dipol also auch auf 15 m ver­wen­det werden.

Das nach­fol­gen­de Foto zeigt den Anten­nen­kopp­ler in einer klei­nen Auf­putz­do­se mit den nach bei­den Sei­ten abge­hen­den Antennendrähten.

Antennenkoppler
Anten­nen­kopp­ler für den Dipol

Die SO239-Buch­se hat auf der Innen­sei­te eine schraub­ba­re SMA Buch­se, so daß der Balun löt­frei zu lösen ist. Auf der Lei­ter­plat­te sieht man die bei­den Ver­län­ge­rungs­spu­len und die Schie­be­schal­ter. Sie haben eini­ge Ver­su­che mit 100 Watt Aus­gangs­lei­stung sowohl im geöff­ne­ten wie auch im geschlos­se­nen Zustand aus­ge­hal­ten. Jetzt blei­ben sie erst­mal drin, bis ich ent­schie­den habe, ob es ein 12‑m oder ein 15-m-Dipol wer­den soll. Im Moment arbei­tet er auf 12‑m, weil ich für 15‑m eine Alter­na­ti­ve habe.

RS-485 Kom­mu­ni­ka­ti­ons­soft­ware

Hier soll nun kurz die Soft­ware beschrie­ben wer­den, über die ein Win­dows PC mit den Bus­teil­neh­mern über RS-485 kom­mu­ni­ziert. Es wur­de das freie und weit ver­brei­te­te Mod­bus-RTU-Pro­to­koll ver­wen­det. Es ist gut doku­men­tiert, wegen Pari­ty und 16-bit CRC hin­rei­chend feh­ler­re­si­stent und es gibt mit QMod­Ma­ster ein frei­es Win­dows-Pro­gramm, das bei der Imple­men­tie­rung und Feh­ler­su­che sehr hilf­reich ist. Sowohl für den Win­dows-PC wie auch für das Ardui­no Bio­top gibt es fer­ti­ge Software.

Vor­be­mer­kun­gen

Mit Ardui­no habe ich selbst nichts zu tun, ein­fach weil es das noch nicht gab, als ich zum ersten­mal mit Atmel Bau­stei­nen gear­bei­tet habe. Gele­gent­lich wer­de ich mir das mal anschau­en. Die Mod­bus-Biblio­thek für Win­dows habe ich mir einen hal­ben Tag lang ange­schaut und sie nicht zum Lau­fen bekom­men. Sie ist sicher gut und kann alles, aber die paar Funk­tio­nen die ich brau­che, habe ich dann doch sel­ber geschrie­ben. Das schien mir schnel­ler zu gehen, zumal die Funk­tio­nen auf der Gegen­sei­te, dem Atmel Bau­stein, schon fer­tig war und sich nicht grund­sätz­lich unter­schei­det. Damit ist nun die kom­plet­te Soft­ware sowohl auf der Host- wie auf der Device-Sei­te selbst­ge­schrie­ben und kann hier ohne Ein­schrän­kun­gen im Quell­text ver­öf­fent­licht werden:

Quell­text der Host-Software

Quell­text der Device-Soft­ware für den ATMEGA644PU

Wer will, kann bei­des ger­ne unein­ge­schränkt wei­ter­be­nut­zen, eine Garan­tie für die feh­ler­freie Funk­ti­on gibt’s natür­lich nicht. Es sind sicher­lich hier und da noch Feh­ler ein­ge­baut. Außer­dem ist nur ein Sub­set des Mod­bus-Pro­to­kolls imple­men­tiert, auch die eine oder ande­re Funk­ti­on, die in der Spec als „man­da­to­ry“ bezeich­net wird, ist nicht vor­han­den (z.T. imple­men­tiert, aber aus­kom­men­tiert da ungetestet).

Als Ent­wick­lungs­um­ge­bung für Atmel ver­wen­de ich „Atmel Stu­dio 7.0“, für Win­dows „VS Express 2013“. Bei­de Ver­sio­nen sind etwas älter, Atmel gehört inzwi­schen zu Micro­chip, und von VS Express gibt es neue­re Ver­sio­nen, die aber nicht mehr mit Win­dows 7 lau­fen, son­dern Win­dows 10 benö­ti­gen. Soll­te ich jemals auf Win 10 umstei­gen, wer­de ich mir eine neue­re Ver­si­on besor­gen. Es gibt im Moment für mich kei­nen Grund zum Umsteigen.

Bei­de Pro­gram­me sind sehr spe­zi­fisch für mei­nen Anwen­dungs­fall geschrie­ben, daher habe ich auch kei­ne aus­führ­ba­re Datei bei­gefügt. Die Quell­tex­te sol­len als Muster die­nen, wie man es machen kann, aber nicht muß. Das Win­dows Pro­gramm mag gleich­zei­tig als Bei­spiel die­nen, wie man die seri­el­le Schnitt­stel­le mit Win­dows-Funk­tio­nen bedient.

Alle Pro­gram­me sind in ANSI‑C geschrie­ben, der ATMEGA nutzt ein paar win­zi­ge Assem­bler-Funk­tio­nen. Für Win­dows wird ledig­lich das Win32-API ver­wen­det und ResEdit als Res­sour­cen Edi­tor, weil die kosten­lo­se Ver­si­on von VS Express zumin­dest bis 2013 kei­nen Res­sour­cen Edi­tor dabei hatte.

Host-Soft­ware

Ganz phan­ta­sie­los habe ich die Host-Soft­ware Ser­Com genannt. Da zur Zeit nur der Anten­nen­um­schal­ter ange­schlos­sen ist, ist dies der erste Tab, der nach dem Start ange­zeigt wird:

Tab Antennenumschalter
Die Bedie­nung des Antennenumschalters

Hier wird ledig­lich eine der bis zu sechs Anten­nen aus­ge­wählt. Die Namen sind in der Regi­stry kon­fi­gu­rier­bar und oben nur Bei­spiel ohne rea­le Bedeu­tung. Die momen­tan akti­ve Anten­ne wird mit dem Icon ange­zeigt, nur eine kann zu einem Zeit­punkt aktiv sein. Port Sta­tus ist eigent­lich eine ver­zicht­ba­re Dia­gno­se­mel­dung. Hier wird der phy­si­ka­li­sche Sta­tus des Ports A ange­zeigt, der die Relais ansteu­ert. Die bei­den Tabs „Rotor“ und „Anten­nen­tu­ner“ sind leer und hier nur Platz­hal­ter für zukünf­ti­ge Steue­run­gen, die am sel­ben Bus hän­gen sollen.

Mit dem Con­fig-Tab wird einer der Bus­teil­neh­mer konfiguriert:

SerCom Config
Ser­Com Config

Beim Start ohne Para­me­ter wer­den hier die Kon­fi­gu­ra­ti­ons­da­ten des PCs und des aus­ge­wähl­ten Devices ange­zeigt, also Baud­ra­te, Device ID und ver­wen­de­ter COM-Port. Wird Ser­Comm mit dem Par­am­ter „-c“ gestar­tet, läuft es im Kon­fi­gu­ra­ti­ons­mo­dus und die hier dun­kel geschal­te­ten Fel­der wer­den weiß und kön­nen geän­dert wer­den. In die­sem Tab wird ein Zäh­ler gezeigt, der angibt, wie oft das EEPROM pro­gram­miert wur­de, denn die Anzahl der Pro­gram­mier­zy­klen ist end­lich (aller­dings wer­den min­de­stens 100k-Zyklen garantiert).

Auch eine Uhr ist imple­men­tiert, deren Datum und Uhr­zeit hier gesetzt und aus­ge­le­sen wer­den kön­nen. Mit dem Wert bei „RTC cor­rec­tion“ kann im Con­fig-Modus ein Kor­rek­tur­wert ein­ge­ge­ben wer­den, mit dem eine Fre­quenz­ab­wei­chung des Quar­zes für die Uhr­zeit kom­pen­siert wird. Mit „Restart Device“ wird auf dem Device ein Watch­dog Reset pro­vo­ziert, also ein ech­ter Hard­ware-Reset. „Refresh“ liest die ange­zeig­ten Daten erneut aus dem Device aus.

Der Dia­gno­se-Tab zeigt eini­ge Daten an, die etwas über den Gesund­heits­zu­stand des Devices aussagen:

SerCom Diagnose
Ser­Com Diagnose

Zunächst wird der Typ des Moduls, sei­ne Takt­fre­quenz und die Ver­si­on der imple­men­tier­ten Soft­ware ange­zeigt. Ver­schie­de­ne Zäh­ler zei­gen dann die Anzahl der unter­schied­li­chen Resets, die Anzahl feh­ler­frei emp­fan­ge­ner eige­ner und frem­der Nach­rich­ten und die Anzahl von Kom­mu­ni­ka­ti­ons­feh­lern an. Auch die Ver­sor­gungs­span­nung und die Tem­pe­ra­tur auf der Device-Sei­te wer­den ange­zeigt. Trotz des nur etwa 30mA gro­ßen Ver­sor­gungs­stroms erwärmt sich das Board merk­lich. Nun­ja, bei 12V sind es ja auch immer­hin 360 mW. Der Tem­pe­ra­tur­sen­sor (TMP275) hat übri­gens eine Genau­ig­keit von 0.5 K und 116 K Auf­lö­sung. Daß drei Stel­len hin­ter dem Kom­ma ange­zeigt wer­den, deu­tet eine höhe­re Genau­ig­keit an.

Außer­dem wer­den die Namen und Zeit­stem­pel der Quell­da­tei­en und der Zeit­punkt des Com­pi­ler­laufs ange­zeigt. Auch hier lässt sich mit der Refresh-Taste der ange­zeig­te Inhalt erneu­ern. Durch Anklicken der „Con­ti­nuous“ Check­box wird der Refresh dau­er­haft aus­ge­führt. Das ist für Dau­er­tests hilf­reich. Ein über Nacht aus­ge­führ­ter Dau­er­test brach­te kei­nen ein­zi­gen Feh­ler her­vor. Daß die Feh­ler­zäh­ler funk­tio­nie­ren, zeig­te aller­dings ein erster Test mit 100 W HF auf dem Antennenumschalter.

Seit eini­gen Tagen und Näch­ten ist die Soft­ware im Ein­satz und hat sich bewährt. Für das Inter­face zwi­schen dem USB-RS485-Wand­ler und dem Bus habe ich auch zum Ein­kop­peln der 12V Ver­sor­gungs­span­nung eine klei­ne Box gebaut:

RS485-PC-Box
RS485 PC-Inter­face Box.

Sie fügt noch­mal klei­ne Tief­päs­se in die Kom­mu­ni­ka­ti­ons­lei­tung ein und ent­stört die Ver­sor­gungs­span­nung eines exter­nen Stecker­netz­teils. Das Gehäu­se ist übri­gens ein sehr preis­wer­tes Euro­box-Gehäu­se, das ich auch für ande­re Din­ge ger­ne verwende.

Anten­nen­um­schal­ter – Teil 4 Inbetriebnahme

Nach­dem der fer­tig auf­ge­bau­te Anten­nen­um­schal­ter seit eini­gen Wochen auf die Instal­la­ti­on war­te­te, war gestern end­lich mal ein hal­ber Tag trocke­nes und schnee­frei­es Wet­ter. Es muß­te ja nicht ein­fach nur die neue Box an die Wand geschraubt und ver­ka­belt wer­den, son­dern das alte RG-213 Kabel soll­te vom Trans­cei­ver zum Anten­nen­um­schal­ter durch ein neu­es ECOFLEX-10 Kabel ersetzt wer­den. Gleich­zei­tig soll­te ein neu­es ECOFLEX-10 Kabel für die 2m/70cm/23cm-Anten­ne (SD 2000) ver­legt wer­den, weil die dem­nächst auf einen dreh­ba­ren Mast mon­tiert wer­den soll. Die Erd­lei­tung für den Anten­nen­um­schal­ter und ein wei­te­res ECO­FLEX-10-Kabel für die 2m/70cm Yagi­an­ten­ne wur­de auf den Ter­min in der Zukunft ver­scho­ben, an dem end­lich der Rotor instal­liert wird.

Nach der pro­be­wei­sen Instal­la­ti­on konn­ten nun erste Ver­su­che mit der ech­ten Anten­ne durch­ge­führt wer­den. Im Grun­de hat alles auf Anhieb funk­tio­niert, aber im Sen­de­be­trieb mit über 50 Watt Aus­gangs­lei­stung kam es zu Kom­mu­ni­ka­ti­ons­feh­lern. Das Pro­zes­sor­board funk­tio­nier­te ohne Pro­ble­me, kein Auf­hän­gen der Soft­ware, kein Watch­dog-Reset und auch die Uhr lief pro­blem­los wei­ter. Der Betrieb mit einer künst­li­chen Anten­ne hat die Anzahl der Kom­mu­ni­ka­ti­ons­feh­ler übri­gens redu­ziert. Dar­aus schlie­ße ich auf Man­tel­wel­len bei der Lang­draht­an­ten­ne. Nach dem Abschal­ten des Sen­de­si­gnals war die Kom­mu­ni­ka­ti­on wie­der feh­ler­frei mög­lich. Die Ursa­che war schnell gefun­den: ich hat­te nicht abge­schirm­tes Flach­band­ka­bel für die Ver­drah­tung der Kom­mu­ni­ka­ti­ons­steck­do­sen zum Board ver­wen­det und außer­dem die RS-485 Lei­tun­gen nicht HF-mäßig ent­kop­pelt, son­dern direkt an die Trei­ber angeschlossen.

Das muss­te geän­dert wer­den. Nun ist auf jeder der bei­den RS-485-Lei­tun­gen ein Tief­paß aus einem BLM21PG331 und einem 1 nF Kon­den­sa­tor direkt an den Pins zum Pro­zes­sor­board ein­ge­baut. Das Flach­band­ka­bel wur­de durch das­sel­be abge­schirm­te Kabel ersetzt, das auch zur Steue­rung zum PC hin ver­legt ist. Hier ist der neue Schalt­plan mit den Ände­run­gen und nach­fol­gend ein Foto der Verkabelung:

Neue Verkabelung der RS-485-Schnittstelle.
Neue Ver­ka­be­lung der RS-485-Schnitt­stel­le. Übersichtsfoto.

Die Tief­päs­se beschrän­ken natür­lich die Baud­ra­te. Tests haben erge­ben, daß 56 kBd noch funk­tio­nie­ren, 115 kBd aber nicht mehr. Nor­ma­ler­wei­se ver­wen­de ich 9600 Bd, was also deut­lich im grü­nen Bereich liegt.

Bei der Ver­ka­be­lung von Kom­mu­ni­ka­ti­ons­schnitt­stel­len stellt sich die Fra­ge, wie man es mit der Abschir­mung hält. Es kom­men immer wie­der Poten­ti­al­un­ter­schie­de auf bei­den Sei­ten der Ver­ka­be­lung vor und ein Strom­fluß auf der Abschir­mung soll­te ver­mie­den wer­den. Wenn die Schnitt­stel­le aber nicht (z.B. durch Opto­kopp­ler) poten­ti­al­ge­trennt ist, dann muß man eben doch dafür sor­gen, daß bei­de Sei­ten zumin­dest auf einem ähn­li­chen Poten­ti­al lie­gen. Klei­ne Poten­ti­al­un­ter­schie­de kön­nen die RS-485-Trans­cei­ver vertragen.

Ich habe das hier so gelöst, daß die Abschir­mung des Kabels zum PC auf der Sei­te des Anten­nen­schal­ters gegen Erde gelegt (grü­ne Lit­zen im Bild unten), auf der PC-Sei­te aber nicht ange­schlos­sen ist.

Neue Verkabelung der RS-485-Schnittstelle.
Neue Ver­ka­be­lung der RS-485-Schnitt­stel­le. Der Stecker zum Netzwerk.

Die Abschir­mung der Innen­ver­ka­be­lung liegt auf der digi­ta­len Mas­se des Antennenumschalters.

Neue Verkabelung der RS-485-Schnittstelle
Neue Ver­ka­be­lung der RS-485-Schnitt­stel­le. Der Stecker zum Antennenumschalter.

Damit ist also die Innen­ver­ka­be­lung auch nur auf einer Sei­te ange­schlos­sen. Bei­de Mas­se­lei­tun­gen sind über eine 15 µH Dros­sel HF-mäßig ent­kop­pelt, aber DC-mäßig ver­bun­den. Ob das der Weiß­heit letz­ter Schluß ist, bleibt abzu­war­ten. Bis­her funk­tio­niert es jeden­falls ohne Pro­ble­me und wei­te­re Kom­mu­ni­ka­ti­ons­feh­ler sind auch beim Sen­de­be­trieb mit 100 Watt nicht mehr auf­ge­tre­ten. Das vor­ge­se­he­ne Abschirm­blech wur­de nicht mon­tiert, es geht auch so.

Der Anten­nen­um­schal­ter ist nun an der Außen­wand neben der Kabel­box mon­tiert und läuft nun im Pro­be­be­trieb. Bis­her ist nur eine Anten­ne ange­schlos­sen und das Erd­ka­bel fehlt noch:

Antennenumschalter fertig installiert
Anten­nen­um­schal­ter fer­tig installiert

Ich habe nun übri­gens das weit­ge­hend pin­kom­pa­ti­ble RS-485-Board mit dem ATMEGA644PA ein­ge­setzt. Es hat einen Tem­pe­ra­tur­sen­sor und eine Span­nungs­re­fe­renz. Damit kann man dann recht prä­zi­se die Betriebs­pa­ra­me­ter des Anten­nen­um­schal­ters messen.

Nach­fol­gend Fotos der bei­den Boxen ohne und mit Deckel:

Antennenumschalter neben der Kabelbox
Anten­nen­um­schal­ter neben der geöff­ne­ten Kabelbox

Antennenumschalter neben der Kabelbox
Anten­nen­um­schal­ter und Kabelbox

Damit soll die Beschrei­bung des Anten­nen­um­schal­ters enden, es sei denn, daß gra­vie­ren­de Din­ge im Betrieb auf­tre­ten. Dem­nächst wer­de ich aber noch die Betriebs­soft­ware auf bei­den Sei­ten, also auf dem RS-485-Board sowie auf dem PC beschreiben.

Hier sind Links zu den vor­he­ri­gen Tei­len die­ser Beschreibung:

Teil 1, Teil 2 und Teil 3.

Anten­nen­um­schal­ter – Teil 3 Gehäu­se­ein­bau und Abschlußmessungen

Der Anten­nen­um­schal­ter ist nun in ein wet­ter­fe­stes Gehäu­se ein­ge­baut, alle Anschlüs­se sind ver­ka­belt und so kön­nen nun die Abschluß­tests vor­be­rei­tet und durch­ge­führt werden.

Antennenumschalter im Gehäuse 3
Anten­nen­um­schal­ter im Gehäu­se – die Unterseite.

Links im Bild sind die sechs SO239 UHF Aus­gangs­buch­sen zu sehen, an die die Anten­nen ange­schlos­sen wer­den, rechts dane­ben die Buch­se, die zum Trans­cei­ver führt. Für die RS-485-Schnitt­stel­le sind zwei glei­che und par­al­lel­ge­schal­te­te Buch­sen vor­ge­se­hen. Eine davon dient als Ein­gangs­buch­se und ist mit dem PC ver­bun­den, die ande­re ist die Aus­gangs­buch­se, an die wei­te­re Steu­er­ge­rä­te ange­schlos­sen wer­den kön­nen. Ich habe mich für 6‑polige wet­ter­fe­ste (IP67) Quick­lock-Stecker und Kupp­lun­gen ent­schie­den, die einen sehr robu­sten Ein­druck machen. Nicht bil­lig, aber preiswert!

RS-485 (genau genom­men EIA-485) erlaubt den Anschluß von min­de­stens 32, mit spe­zi­el­len Trei­bern (die hier auch ein­ge­setzt sind) sogar bis zu 256 Bus­teil­neh­mern. Das letz­te Gerät in der Ket­te muß einen Abschluß­wi­der­stand bekom­men, damit Refle­xio­nen mini­miert wer­den. Dazu dient der oben nur schlecht zu sehen­de Abschluß­stecker mit ein­ge­bau­tem 120 Ω Wider­stand. Die Kabel­durch­füh­rung an der rech­ten Unter­sei­te ist für ein Erdungs­ka­bel vorgesehen.

Antennenumschalter im Gehäuse 1
Anten­nen­um­schal­ter im wet­ter­fe­sten Gehäuse

Die­ses Foto zeigt den Innen­auf­bau. Der Anten­nen­um­schal­ter ist auf ein 1 mm dickes geer­de­tes Alu­blech mon­tiert. Mit Hil­fe von Abstands­bol­zen kann ein zwei­tes Blech die­ser Art über dem Anten­nen­um­schal­ter auf­ge­schraubt wer­den. Das kann dann als Abschir­mung in der ande­ren Rich­tung und gleich­zei­tig als Trä­ger für wei­te­re Lei­ter­plat­ten die­nen, wie z.B. einen WSPR Sender.

Antennenumschalter im Gehäuse 2
Anten­nen­um­schal­ter im Gehäu­se – die Ver­ka­be­lung der UHF-Buchsen.

Hier ist die Ver­ka­be­lung der Buch­sen zu sehen. Die RG58-Kabel sind einer­seits an die SO239-Buch­sen gecrimpt, ande­rer­seits an die gewin­kel­ten SMA-Steck­ver­bin­der. Das gefrä­ste Alu­blech, das als Scha­blo­ne für das Boh­ren der Gehäu­se­durch­brü­che dien­te, ist auf der Innen­sei­te des Gehäu­ses mit den Buch­sen ver­schraubt. Das gibt noch etwas zusätz­li­che mecha­ni­sche Sta­bi­li­tät, wäre aber ver­mut­lich nicht unbe­dingt notwendig.

Die Abschluß­mes­sun­gen

Nach­dem der Anten­nen­um­schal­ter nun im Gehäu­se ein­ge­baut ist und die end­gül­ti­gen Buch­sen bekom­men hat, müs­sen die in Teil 2 duch­ge­führ­ten Mes­sun­gen noch­mal wie­der­holt wer­den. Das nach­fol­gen­de Foto zeigt den Meß­auf­bau mit dem ange­schlos­se­nen Netzwerk-Analysator.

Antennenumschalter im Gehäuse, Meßaufbau
Anten­nen­um­schal­ter im Gehäu­se. Auf­bau zum Mes­sen der Durch­gangs- und Reflexionsdämpfung.

Anders als bei den ersten Mes­sun­gen star­tet der Meß­be­reich nun bei 100 kHz und endet bei 200 MHz. Ich woll­te ein­fach mal sehen, mit wel­chen Ein­schrän­kun­gen man bei einem (nicht vor­ge­se­he­nen) Betrieb bei 145 MHz im 2‑m-Band rech­nen müss­te. Der Start bei 100 kHz ver­mei­det Arte­fak­te bei nied­ri­gen Fre­quen­zen. Nach­fol­gend die Meß­er­geb­nis­se der ein­zel­nen Kanäle.

Dis­kus­si­on der Meßergebnisse

In der nach­fol­gen­den Dis­kus­si­on wird immer wie­der von den gemes­se­nen Wer­ten in dB auf abso­lu­te Lei­stun­gen umge­rech­net. Der Grund ist, daß der Umschal­ter mit den 100 Watt eines IC-7300 Trans­cei­vers betrie­ben wer­den soll. Da die Ver­lust­lei­stun­gen zur Erwär­mung der Bau­tei­le füh­ren, soll damit abge­schätzt wer­den, ob die Lei­stung trag­bar ist. Ein Bast­ler weiß aus Erfah­rung, wie warm ein mit 250 mW oder 1 W bela­ste­ter Wider­stand wird und ob man die­se Lei­stung einem Kabel, einer Buch­se oder einem Relais zumu­ten kann. Alle abso­lu­ten Lei­stun­gen sind auf die genann­te Ein­gangs­lei­stung von 100 Watt bezogen.

Die Dämp­fung bis 30 MHz ist jetzt von 0.02 dB auf bis zu 0.1 dB ange­stie­gen. Das heißt, daß bei Betrieb im 10-m-Band mit 100 Watt etwas über 2 W im Umschal­ter ver­bra­ten wer­den. Nicht schön, aber trag­bar. Allein die unge­fähr 25 cm RG58-Kabel, die bei jedem Kanal zwi­schen den bei­den Buch­sen lie­gen, dürf­ten 0,02 dB (0,4 W) dazu bei­tra­gen (8 dB/100m @ 30 MHz). Wenn wir die feh­len­den 0.06 dB gleich­mä­ßig auf die vier Steck­ver­bin­der ver­tei­len (SO239-SMA-SMA-SO239), dann blei­ben an jedem die­ser Steck­ver­bin­der 0.015 dB hän­gen, was plau­si­bel klingt. Bei 100 Watt Ein­gangs­lei­stung sind das dann jeweils gut 300 mW. Das muß man wohl akzep­tie­ren. Auch mit der drei- oder vier­fa­chen Lei­stung soll­te das in Ord­nung sein, aber bei noch höhe­ren Lei­stun­gen wird man die Ver­lu­ste redu­zie­ren müs­sen, sonst läuft der Umschal­ter im Dau­er­be­trieb heiß.

Die oben doku­men­tier­ten Mes­sun­gen zei­gen auch jeweils die reflek­tier­te Lei­stung, also die Rück­lauf­dämp­fung, in dB an. Bis 30 MHz liegt sie auf jedem Kanal, außer dem drit­ten, unter 30 dB. Das bedeu­tet, daß weni­ger als ein Tau­send­stel der ein­ge­spei­sten Lei­stung reflek­tiert wird. Bei 100 Watt am Ein­gang sind das 100 mW und das ist guten Gewis­sens ver­nach­läs­sig­bar. Bei Kanal 3 zeigt sich eine Anoma­lie. Das Smith Dia­gramm ver­rät, daß die kapa­zi­ti­ve Bela­stung höher ist, als auf den ande­ren Kanä­len, denn die Kur­ve geht frü­her und deut­li­cher nach unten in den kapa­zi­ti­ven Bereich. Die Rück­lauf­dämp­fung beträgt bei 30 MHz nur noch 25 dB, was schon einer rück­lau­fen­den Lei­stung von 300 mW entspricht.

Bei höhe­ren Fre­quen­zen jen­seits von 30 MHz macht sich die Anoma­lie auf Kanal 3 immer stär­ker bemerk­bar. Bei 75 MHz beträgt dort die Durch­lauf­dämp­fung 0.21 dB, wäh­rend sie auf den ande­ren Kanä­len höch­stens 0.15 dB beträgt. Gleich­zei­tig sieht man aber auch, daß die Rück­fluß­dämp­fung auf gut ‑17 dB ansteigt, was natür­lich an dem schlech­ten Steh­wel­len­ver­hält­nis liegt. Anders aus­ge­drückt, von den 4,7 W die nicht am Aus­gang ankom­men (0.21 dB Dämp­fung), wer­den 2 W zum Ein­gang reflek­tiert (-17 dB). Letzt­lich gehen also auf dem Kanal 3 doch nur 2,7 W als Wär­me ver­lo­ren. Zum Ver­gleich hat Kanal 5 eine Durch­lauf­dämp­fung von 0,12 dB und eine Rück­lauf­dämp­fung von 30 dB. Hier wer­den also nur 100 mW reflek­tiert und genau wie auf dem drit­ten Kanal 2,7 W in Wär­me umge­wan­delt. Die Dämp­fung ist also auf allen Kanä­len im Rah­men der Meß­ge­nau­ig­keit gleich, aber das Steh­wel­len­ver­hält­nis und damit die reflek­tier­te Lei­stung ist unterschiedlich.

Was ist also die Quint­essenz die­ser Mes­sun­gen? Ich wer­de den Anten­nen­um­schal­ter im gesam­ten Kurz­wel­len­be­reich inklu­si­ve dem 6‑m-Band und dem 4‑m-Band ein­set­zen. Auch Kanal 3 wird ver­wen­det, mit der mar­gi­nal höhe­ren Rück­lauf­lei­stung muß der Trans­cei­ver zurechtkommen.

Was bedeu­ten die Mes­sun­gen bei 145 MHz für einen even­tu­el­len zukünf­ti­gen UKW Anten­nen­um­schal­ter? Der hier gebau­te Umschal­ter ist für das 2‑m-Band sicher nicht mehr geeig­net, das Steh­wel­len­ver­hält­nis liegt auf allen Kanä­len zwi­schen 1,25 und 2. Ein klei­nes Spreadsheet zeigt, daß die tat­säch­li­chen Ver­lu­ste bei 145 MHz auf allen Kanä­len zwi­schen 0,25 und 0,3 dB lie­gen, wenn man die reflek­tier­te Lei­stung zur durch­ge­las­se­nen Lei­stung addiert, wie es bei idea­lem Steh­wel­len­ver­hält­nis von 1 der Fall wäre. Da RG58 bei 145 MHz etwa 18 dB Ver­lust auf 100 m hat, kann man bei den hier ver­bau­ten 25 cm also schon knapp 0,05 dB dem Kabel zurech­nen. Dämp­fungs­wer­te für SMA und UHF Steck­ver­bin­der habe ich nicht gefun­den, daher ver­tei­le ich, wie oben, die ver­blei­ben­de Dämp­fung gleich­mä­ßig auf die ver­wen­de­ten Steck­ver­bin­der und das Relais. Wür­de man also die Kabel und zwei Steck­ver­bin­der weg­las­sen, soll­te mit den hier ver­wen­de­ten Relais auf 2 m eine Dämp­fung von 0,1 bis 0,15 dB erreich­bar sein. Mecha­nisch wird man die Relais dann aber im Kreis anord­nen und die Buch­sen direkt auf die Pla­ti­ne löten.

Hier geht’s zum ersten und zum zwei­ten Teil.

Anten­nen­um­schal­ter – Teil 2, Messungen

Der Anten­nen­um­schal­ter ist nun halb auf­ge­baut und kann durch­ge­mes­sen wer­den. Um bei einem völ­li­gen Ver­sa­gen nicht alles wie­der aus­lö­ten oder gar ver­schrot­ten zu müs­sen, sind die im Moment nicht benö­tig­ten Tei­le noch unbe­stückt. Die Relais wer­den noch nicht vom Con­trol­ler son­dern über eine Steck­brücke geschal­tet. Hier ein Foto des Testaufbaus:

Testaufbau mit Dummyload.
Test­auf­bau des halb bestück­ten Anten­nen­um­schal­ters mit Dummyload.

Zum Test­be­trieb am Aus­gang des Trans­cei­vers mit 100 Watt Sen­de­lei­stung ist hier eine Dum­my­load ange­schlos­sen. Fotos mit einer Wär­me­bild­ka­me­ra sind wei­ter unten gezeigt.

Durch­gangs- und Reflexionsmessungen

Hier die aus­führ­li­chen Test­ergeb­nis­se mit einem vek­to­ri­el­len Netzwerkanalysator.

s11 und s21 Messung
s11 und s21 Mes­sung: Ein­gang auf Aus­gang 1

s11 und s21 Messung
s11 und s21 Mes­sung: Ein­gang auf Aus­gang 2

s11 und s21 Messung
s11 und s21 Mes­sung: Ein­gang auf Aus­gang 3

s11 und s21 Messung
s11 und s21 Mes­sung: Ein­gang auf Aus­gang 4

s11 und s21 Messung
s11 und s21 Mes­sung: Ein­gang auf Aus­gang 5

s11 und s21 Messung
s11 und s21 Mes­sung: Ein­gang auf Aus­gang 6

Die Meß­er­geb­nis­se zei­gen jeweils die Durch­gangs­dämp­fung s21 zu jedem der sechs Aus­gän­ge und das Refle­xi­ons­ver­hal­ten s11 am Ein­gang, jeweils von 0 bis 100 MHz. Die blau­en Krei­se zei­gen die Steh­wel­len­ver­hält­nis­se 1,25, 2 und 3.

Als Ein­satz­be­reich sind 0 bis 30 MHz ange­strebt, höhe­re Fre­quen­zen wer­den aber ger­ne mit­ge­nom­men. Die Durch­gangs­dämp­fung bis 30 MHz ist in jedem Fall unter 0,02 dB. Dabei dürf­te der Meß­feh­ler recht hoch sein, denn trotz Kali­brie­rung wird auch hier und da mal eine Ver­stär­kung von 0.01 dB ange­zeigt. Bei 100 Watt Ein­gangs­lei­stung bedeu­tet eine Dämp­fung um 0.02 dB einen Ver­lust von knapp 500 mW, also durch­aus trag­bar. Bis 75 MHz wächst die­ser Ver­lust auf 0.07 dB an, was immer­hin schon 1,5 Watt ent­spricht, aber auch noch nicht besorg­nis­er­re­gend ist. Einen Aus­rei­ßer gibt es sowohl bei der Dämp­fung wie beim Steh­wel­len­ver­hält­nis auf Kanal 3. Die Ursa­chen sind noch nicht bekannt. Den­noch ist auch Kanal 3 bis 30 MHz ohne Ein­schrän­kun­gen verwendbar.

Mes­sung der Kopp­lung auf Nachbarkanäle

Die nach­fol­gen­den Mes­sun­gen zei­gen die Kopp­lung auf Nach­bar­ka­nä­le für aus­ge­wähl­te Einstellungen:

s11 und s21 Messung
s11 und s21 Mes­sung: Ein­gang auf Aus­gang 1 geschal­tet, Mes­sung der Kopp­lung auf Aus­gang 2

s11 und s21 Messung
s11 und s21 Mes­sung: Ein­gang auf Aus­gang 6 geschal­tet, Mes­sung der Kopp­lung auf Aus­gang 1

s11 und s21 Messung
s11 und s21 Mes­sung: Ein­gang auf Aus­gang 6 geschal­tet, Mes­sung der Kopp­lung auf Aus­gang 5

Die Nach­bar­ka­nal­dämp­fung liegt in allen gemes­se­nen Fäl­len bis 30 MHz bei knapp 46 dB. Das bedeu­tet, daß bei 100 Watt über­tra­ge­ner Lei­stung etwa 2,5 mW auf den Nach­bar­ka­nal gekop­pelt wer­den. Auch das ist ein völ­lig akzep­ta­bler Wert. Bei 75 MHz ist die Kopp­lung erwar­tungs­ge­mäß grö­ßer, aber mit 37 dB (20 mW bei 100 Watt am Ein­gang) immer noch unkritisch.

Betrieb mit hoher Leistung

Die Meß­er­geb­nis­se stim­men zuver­sicht­lich und so kann ein Dau­er­test mit einer Dum­my­load bei 100 W Lei­stung durch­ge­führt wer­den. Die selbst­ge­bau­te Dum­my­load ist für 100 Watt kon­stru­iert, wird aber nach eini­gen Minu­ten so heiß, daß man sie nicht mehr anfas­sen kann. Daher sind die Dau­er­tests auf 5 Minu­ten begrenzt, gefolgt von einer min­de­stens halb­stün­di­gen Abkühl­pha­se. Ein Foto des Test­auf­baus im opti­schen Bereich mit die­ser Dum­my­load ist oben gezeigt. Hier fol­gen Fotos mit der Wärmebildkamera:

Die Wär­me­bil­der zei­gen kei­ne signi­fi­kan­te Erwär­mung des Anten­nen­um­schal­ters. Schon ohne HF sieht man, wie sich das Relais durch den Spu­len­strom von knapp 20 mA (220 mW) erwärmt. Nach etwa fünf Minu­ten Betrieb mit 100 Watt kommt kei­ne signi­fi­kan­te Erwär­mung hin­zu. Zu beach­ten ist, daß die Farb­ge­bung dem jewei­li­gen Tem­pe­ra­tur­ver­lauf ange­passt wird. Damit haben Far­ben in jedem Bild eine unter­schied­li­che Bedeu­tung. Der Bereich wird jeweils auf der ver­ti­ka­len Ska­la am rech­ten Bild­rand gezeigt. Links oben wird die Tem­pe­ra­tur im Faden­kreuz der Bild­mit­te angezeigt.

Die Wär­me­bild­ka­me­ra zeigt übri­gens das Wär­me­bild über­la­gert mit einem nied­rig auf­ge­lö­sten Foto im opti­schen Bereich. Bei­de Fotos sind je nach Abstand zum Motiv nicht immer deckungsgleich.

Inzwi­schen ist der Anten­nen­um­schal­ter fer­tig bestückt und war­tet auf sei­nen Ein­bau in ein wet­ter­fe­stes Gehäuse:

Der fertig bestückte Antennenumschalter.
Der fer­tig bestück­te Antennenumschalter.

Das Abschirm­blech soll nur bei Bedarf ein­ge­baut werden.

Der Ein­bau in ein Gehäu­se wird im näch­sten und vor­aus­sicht­lich letz­ten Teil dokumentiert.

Hier ist Teil 1 und hier Teil 3 die­ser Beschreibung.

Anten­nen­um­schal­ter – Teil 1

Der Weg vom Shack nach drau­ßen auf den Bal­kon, wo die Anten­nen z.T. schon auf­ge­stellt sind und noch wer­den sol­len, ist begrenzt. Ich habe eine Kern­boh­rung von immer­hin 40 mm durch die Außen­mau­er des Hau­ses getrie­ben, aber da sol­len immer­hin min­de­stens drei Eco­flex-10 Koax­ka­bel durch, ein vier­ad­ri­ges Kabel für die Rotor­steue­rung und ein etwas dün­ne­res mehr­ad­ri­ges Kabel für die RS-485-Mod­Bus-Schnitt­stel­le, über die ich ver­schie­de­ne Außen­ge­rä­te ansteu­ern will, inklu­si­ve der für die Gerä­te not­wen­di­gen Span­nungs­ver­sor­gung. Etwas Reser­ve für ein vier­tes oder fünf­tes Koax­ka­bel wäre auch anzu­ra­ten. Außer­dem hat mein IC-7300, so wie wohl die mei­sten Kurz­wel­len-Trans­cei­ver, nur einen ein­zi­gen Anten­nen­aus­gang. Wie ich es auch dre­he und wen­de, es muß ein fern­ge­steu­er­ter Anten­nen­um­schal­ter für Kurz­wel­le her. Sowas kann man natür­lich kau­fen, aber unser­eins bastelt ja ger­ne und für Kurz­wel­le soll­te der Selbst­bau kei­ne all­zu­gro­ße Her­aus­for­de­rung sein.

Vor­über­le­gun­gen

Ich hat­te mir das immer recht kom­pli­ziert vor­ge­stellt, spe­zi­el­le Koax­re­lais, impe­danz­kon­trol­lier­te Strei­fen­lei­tun­gen, hoch­span­nungs­fe­ste Bau­tei­le und nicht zuletzt alles in einen abge­schirm­ten Metall­kä­fig ein­ge­baut. Rea­li­stisch betrach­tet reden wir aber von einer Wel­len­län­ge von min­de­stens 10 m und einer Lei­stung von 100 Watt. Mit der Aus­sa­ge, daß Lei­tungs­län­gen von weni­ger als einem zwan­zig­stel der Wel­len­län­ge zwar meß­bar, aber noch nicht son­der­lich rele­vant sind, bin ich ganz gut durch mein Berufs­le­ben gekom­men. Selbst wenn ich noch das 4‑m-Band bei 70 MHz mit gewis­sen Abstri­chen dazu­neh­me, dann kann ich also recht guten Gewis­sens 20 cm lan­ge Lei­tun­gen ver­le­gen, ohne mir um die Impe­danz und Signal­lauf­zei­ten gro­ße Sor­gen zu machen.

100 Watt in einem 50 Ohm-System bedeu­ten gut 70 Veff bei einer Strom­stär­ke von nicht ein­mal 1,5 A. Das lässt sich gut mit preis­wer­ten und klei­nen Bau­ele­men­ten beherr­schen. Man braucht für die Ver­drah­tung kein 10 mm dickes Koax­ka­bel und auch kei­ne N‑Steckverbinder. SMA-Steck­ver­bin­der sol­len im Kurz­wel­len­be­reich für mehr als 1 kW Lei­stung gut sein und selbst RG174U-Kabel soll bis zu 1,1 kV aus­hal­ten, RG58U sogar bis zu 1,4 kV. Die­se Gren­zen muß man frei­lich nicht aus­te­sten, aber es zeigt, daß die Bau­tei­le für die im Ama­teur­funk zuge­las­se­nen Lei­stungs­gren­ze von 750 Watt zu gebrau­chen sind, erst recht für nur 100 Watt. Aller­dings soll­te man im Hin­ter­kopf behal­ten, daß die heut­zu­ta­ge popu­lä­ren digi­ta­len Betriebs­ar­ten im Gegen­satz zu CW oder SSB die­se Lei­stung über eine län­ge­re Zeit­span­ne von min­de­stens 15 Sekun­den bei FT‑8, 2 Minu­ten bei WSPR oder gar vie­le Minu­ten bei RTTY ver­tra­gen müssen.

Die Rea­li­sie­rung

Da auf dem Bal­kon bereits ein was­ser­dich­tes IP65 Kunst­stoff­ge­häu­se vom Typ RND 455–00166 für die diver­sen Kabel­durch­füh­run­gen an der Wand hängt, soll auch der Anten­nen­um­schal­ter in ein sol­ches bau­glei­ches Gehäu­se ein­ge­baut wer­den. Wenn man an den Rän­dern etwas Platz lässt, kann man bequem 230 mm x 150 mm ver­bau­en und hat dafür eine Höhe von min­de­stens 70 mm zur Ver­fü­gung. Die unte­re Flä­che reicht links oder rechts für den Ein­bau von sechs N- oder SO239-Buch­sen aus. Auf die ande­re Sei­te kom­men dann die Steck­ver­bin­der für die Span­nungs­ver­sor­gung und die RS485 Lei­tung. Letzt­lich hat die­ses Gehäu­se dann die Anzahl der anschließ­ba­ren Anten­nen bestimmt, vier Aus­gän­ge waren Pflicht, da sechs Aus­gän­ge pas­sen, ist es nun ein 6‑fach Umschal­ter gewor­den. Hier der Schalt­plan und die KiCad-3D-Ansicht:

Schaltplan des Antennenumschalters
Schalt­plan des Anten­nen­um­schal­ters (Link auf PDF).

Antennenumschalter von oben
KiCad 3D-Vor­schau des Anten­nen­um­schal­ters von oben

Antennenumschalter von unten
Anten­nen­um­schal­ter von unten

Die Lei­ter­plat­te ist 100 mm hoch und 200 mm breit und auf dop­pel­sei­ti­gem FR‑4 Mate­ri­al gefräst.

Zur Steue­rung ist das ATTi­ny1634-Modul mit RS485-Schnitt­stel­le ein­ge­setzt. Es ist in der 3D-Vor­schau oben hin­ter dem Abschirm­blech zu sehen. Über einen ULN2803A treibt die­ses Modul die Relais auf dem unte­ren Teil der Pla­ti­ne an. Zwi­schen Steu­er­mo­dul und HF-Umschal­ter ist auf bei­den Sei­ten der Lei­ter­plat­te ein etwa 2,5 mm brei­ter Iso­la­ti­ons­ka­nal gezo­gen. Die Flä­chen sind jeweils aus­ge­füllt und mit Mas­se ver­bun­den, die Sei­te des Steu­er­mo­duls mit der „digi­ta­len“ Mas­se des Pro­zes­sors, die des Umschal­ters mit der geer­de­ten Abschir­mung der Koax­ka­bel. Zur Ver­bin­dung mit den jewei­li­gen N- oder SO239-Anten­nen­buch­sen am Gehäu­se wer­den SMA-Buch­sen eingesetzt.

Als Relais sind Schrack PE014012 ein­ge­setzt, die für 250 VAC und 5 A spe­zi­fi­ziert sind. Auch das soll­te nomi­nal für mehr als 1 kW Lei­stung rei­chen. Schal­ten soll­te man natür­lich mög­lichst ohne Last.

Jede ein­zel­ne Anten­ne ist über Gas­ent­la­dungs­röh­ren gegen sta­ti­sche Über­span­nun­gen geschützt. Sie zün­den bei 600 V. Außer­dem ist jeweils ein hoch­oh­mi­ger Wider­stand par­al­lel geschal­tet, der nied­ri­ge­re sta­ti­sche Auf­la­dun­gen ablei­ten soll. Die SMA-Buch­sen der obe­re Rei­he sind jeweils im Ruhe­zu­stand mit der zuge­hö­ri­gen Anten­ne ver­bun­den. Die Idee ist hier, daß viel­leicht mal ein klei­ner WSPR-Sen­der in das Gehäu­se ein­ge­baut wer­den kann, der dann die Anten­ne benutzt, wenn sie nicht von der Sta­ti­on im Shack benö­tigt wird. Die Bestückung die­se Buch­sen ist natür­lich optional.

Die SMA-Buch­sen auf der Lei­ter­plat­te haben nur drei Mas­se­pins, damit das Signal des Cen­ter­pins bequem und mit gro­ßem Abstand nach außen geführt wer­den kann. Das soll die Iso­la­ti­ons­strecke auf min­de­stens 1 mm ver­grö­ßern und so höhe­re Span­nun­gen zulas­sen. Einer der vier Pins der SMA Buch­sen muß daher vor dem Ein­lö­ten abge­bro­chen werden.

Nicht alle not­wen­di­gen Lei­tun­gen sind auf der Lei­ter­plat­te unter­ge­kom­men. Die Ver­tei­lung der HF auf die Relais soll über einen dicken Draht auf der Unter­sei­te der Pla­ti­ne im Abstand von einem oder zwei Mil­li­me­tern erfol­gen. Auch die Schalt­ein­gän­ge der Relais müs­sen über Draht­stücke mit den Trei­ber­aus­gän­gen des ULN2803A ver­bun­den werden.

Die Lei­ter­plat­te ist dop­pel­sei­tig gefräst, aber ohne Durch­kon­tak­tie­run­gen. Auf der Ober­sei­te sind aller­dings kei­ne Lei­ter­bah­nen ver­legt, son­dern nur die Mas­se­flä­chen, wie auch auf der Unter­sei­te. Daher muß nicht jeder Pin auch oben ange­lö­tet wer­den. Den einen oder ande­ren Mas­se­pin soll­te man aber schon beid­sei­tig kon­tak­tie­ren, damit die Mas­se­flä­che über­haupt eine Wir­kung haben kann.

Oberseite Antennenumschalter
Ober­sei­te des noch unbe­stück­ten, gefrä­sten und mit Löt­lack beschich­te­ten Antennenumschalters.

Unterseite des Antennenumschalters
Unter­sei­te des Antennenumschalters.

So, jetzt wer­de ich erst­mal die Pla­ti­ne zusam­men­lö­ten und zumin­dest die Dämp­fung der ein­zel­nen Kanä­le im Kurz­wel­len­be­reich mes­sen. Danach geht’s mit dem zwei­ten Teil die­ses Bei­trags weiter.

Hier ist der zwei­te und hier der drit­te Teil.

Vor­be­rei­tung zum Bau eines Monoband-Dipols

Wie schon vor ein paar Tagen beschrie­ben, will ich dem­nächst mal zu Test­zwecken einen Mono­band Dipol wie im Lehr­buch beschrie­ben auf­bau­en. Den Hal­ter für die Spei­sung in der Mit­te habe ich schon­mal gefräst.

Antennenhalter
Ein­zel­tei­le für den Anten­nen­hal­ter. PVC-Block zum Hal­ten der Last und Lei­ter­plat­te für die Ver­drah­tung. Schal­ter nur zu Meßzwecken.

Der PVC-Block wird unter die Lei­ter­plat­te mon­tiert und er soll die Haupt­last der Anten­nen­dräh­te aufnehmen.

Antennenhalter
Mon­ta­ge der Halteschrauben.

In die­sen PVC-Block wer­den die Schrau­ben mon­tiert und fest ange­zo­gen. Die bei­den Ver­län­ge­rungs­spu­len, jeweils etwa 500 nH (10 Win­dun­gen auf 10 mm Boh­rer), sind hier bereits auf­ge­lö­tet und der gan­ze Block ist in eine Auf­putz­do­se gelegt:

Antennenhalter
Anten­nen­hal­ter fer­tig ein­ge­baut in eine Aufputzdose.

Die bei­den Schal­ter über­brücken die Spu­len und sind nur zu Meß­zwecken vor­ge­se­hen. In der end­gül­ti­gen Ver­si­on wer­den sie entfernt.

An die bei­den etwas dicke­ren M4-er Schrau­ben in Dosen­mit­te sol­len dann die bei­den seit­lich abge­hen­den Anten­nen­dräh­te ange­schraubt wer­den. Unten wird eine SO239-Buch­se ein­ge­baut, die über die bereits beschrie­be­ne Man­tel­wel­len­sper­re an die obe­ren bei­den M3-er Schrau­ben ange­schlos­sen wer­den soll.

Soweit der aktu­el­le Stand. Das Pro­jekt wird fort­ge­führt, wenn es das Wet­ter zulässt.

Mono­band-Dipol

Mei­ne end­ge­spei­ste Lang­draht­an­ten­ne funk­tio­niert auf dem 20-m-Band und dem 40-m-Band recht gut, mit den genann­ten Kom­pro­mis­sen auch auf 15 m und 10 m. Auf allen genann­ten Bän­dern habe ich etli­che FT‑8 QSOs durch­ge­führt. Bei ein­ge­hen­de­ren Tests habe ich aber jetzt fest­ge­stellt, daß auf dem 10-m-Band schon nach einer Minu­te Dau­er­test mit 50 Watt das Steh­wel­len­ver­hält­nis lang­sam weg­läuft. Nach zwei oder drei Minu­ten geht es dann schlag­ar­tig auf unend­lich. Das­sel­be pas­siert mit 100 Watt auf 15 m, aller­dings dau­ert es da etwa dop­pelt so lan­ge. Auf 40 und 20 m tritt die­ser Effekt zumin­dest nicht inner­halb der ersten zehn Minu­ten auf. Da ist etwas ober­faul. Ent­we­der wird der Über­tra­ger zu heiß oder der Kera­mik­kon­den­sa­tor am Ein­gang des Anpaß­glieds macht Zicken. Das wer­de ich wei­ter prü­fen, wenn das Wet­ter wie­der bes­ser wird. Bis dahin wer­de ich mich noch­mal, zunächst theo­re­tisch, mit dem Anten­nen­bau befassen.

Beim Bau der Lang­draht­an­ten­ne habe ich gelernt, daß es in der Pra­xis nicht tri­vi­al ist, eine Anten­ne für meh­re­re Bän­der zu bau­en, auch wenn sie har­mo­nisch zuein­an­der sind. Auch sind rea­le Über­tra­ger ziem­lich weit vom idea­len Über­tra­ger weg, viel­leicht auch wegen sub­op­ti­ma­ler Wickel­tech­nik. Da gibt es sicher­lich Ver­bes­se­rungs­po­ten­ti­al. Bei­spiels­wei­se habe ich jetzt in dem Balun-Work­shop gele­sen, daß man Ring­ker­ne zum Ver­mei­den von Span­nungs­über­schlä­gen bes­ser nicht mit Kup­fer-Lack-Draht bewickelt, son­dern Sili­kon-iso­lier­te Lit­ze neh­men soll. Das wer­de ich bei näch­ster Gele­gen­heit mal aus­pro­bie­ren. Die dürf­te wegen ihrer Bieg­sam­keit auch viel leich­ter zu ver­ar­bei­ten sein.

Jetzt wer­de ich aber erst mal einen Dipol nach Lehr­buch für ein ein­zi­ges Band bau­en und ihn nach allen Regeln der Kunst auf 50 Ohm Wel­len­wi­der­stand in Band­mit­te trim­men. Ich wer­de ihn auf dem obe­ren Bal­kon auf­hän­gen, der eine Spann­wei­te von gut 5,50 m zulässt. Der Dipol wäre damit etwa 8 m über dem Erd­bo­den, aber das Edel­stahl-Bal­kon­ge­län­der und die nicht weit ent­fern­te Dach­rin­ne wer­den sicher ihren Ein­fluß gel­tend machen. Schön wäre, wenn ich einen Dipol für das 15-m-Band bau­en könn­te. Wenn ich wie­der den star­ren Alu­mi­ni­um-Wei­de­zaun­draht neh­me, könn­te die­ser auf bei­den Sei­ten eini­ge zehn Zen­ti­me­ter über­ste­hen ohne daß er wie bei einer Lit­ze wegen der Schwer­kraft durchhängt.

Begin­nen wir mal mit einer Simu­la­ti­on. Dafür emp­fiehlt sich das kosten­lo­se Pro­gramm 4nec2, das man z.B. hier her­un­ter­la­den kann. Bekannt­lich hat ein Dipol im Reso­nanz­fall eine reel­le Impe­danz von etwa 70 Ohm, also etwas abseits der gewünsch­ten 50 Ohm. Das ist nor­ma­ler­wei­se kein Pro­blem, weil es deut­lich inner­halb des Abstimm­be­reichs eines Anten­nen­tu­n­ers liegt. Hier die Simu­la­ti­on eines 6,85 m lan­gen Dipols (die Band­mit­te bei 21,225 MHz ent­spricht einer Wel­len­län­ge von 14,13 m).

Impedanz eines 685cm Dipols
Impe­danz eines ins­ge­samt 685 cm lan­gen Dipols mit 4nec2 simuliert.

Der Ver­kür­zungs­fak­tors liegt bei etwa 0,97 und die reel­le Impe­danz bei 66 Ohm. 4nec2 kann auch das zuge­hö­ri­ge Smith Dia­gramm darstellen:

Smith-Chart eines insgesamt 685 cm langen Dipols
Smith-Chart des oben gezeig­ten Dipols.

Die simu­lier­ten Wer­te kön­nen im Touch­stone-For­mat als s1p-Datei expor­tiert und mit SimS­mith wie­der ein­ge­le­sen werden:

Wiedereingelesen mit SimSmith
Touch­stone-Datei wie­der­ein­ge­le­sen mit SimSmith.

Der Kreis für ein Steh­wel­len­ver­hält­nis von 1,5 zeigt, daß der Dipol auf dem 15-m-Band bereits ohne wei­te­re Anpas­sungs­maß­nah­men zu benut­zen wäre. SimS­mith bie­tet aller­dings die Mög­lich­keit, eine Anpas­sung auf 50 Ohm mit einem LC-Glied zu erreichen:

Anpassung auf 50 Ohm
Anpas­sung mit einem LC-Glied auf 50 Ohm

Man sieht hier an der oran­gen Linie, daß der Kon­den­sa­tor die Impe­danz zunächst in den kapa­zi­ti­ven Bereich ver­schiebt und die Spu­le (grün) sie wie­der in Rich­tung zum induk­ti­ven Bereich ver­schiebt. Auf den Kon­den­sa­tor kann man kom­plett ver­zich­ten, wenn man nicht bei einer reel­len Impe­danz star­tet, son­dern im kapa­zi­ti­ven Bereich eines Dipols. Das ist dann der Fall eines ver­kürz­ten Dipols mit Ver­län­ge­rungs­spu­le. Bei einem Dipol mit 6,15 m Gesamt­län­ge sieht das dann fol­gen­der­ma­ßen aus:

Anpassung verkürzter Dipol auf 50 Ohm
Anpas­sung des ver­kürz­ten Dipols mit Ver­län­ge­rungs­spu­le auf 50 Ohm

Wel­che Art der Anpas­sung nun letzt­lich bes­ser ist, bleibt abzu­war­ten. Nor­ma­ler­wei­se wird man den Dipol in reso­nan­ter Län­ge ohne eige­ne Anpas­sung ver­wen­den und den Anten­nen­tu­ner an der ande­ren Sei­te des Koax­ka­bels sei­ne Arbeit machen las­sen. Wegen der begrenz­ten Ver­hält­nis­se auf unse­rem Bal­kon wer­de ich aber die ver­kürz­te Anten­ne mit Ver­län­ge­rungs­spu­le aus­te­sten, sobald das Wet­ter bes­ser wird und die Tage län­ger werden.

Balun nach Reisert

Über Balu­ne ist ver­mut­lich so ziem­lich alles gesagt wor­den. Eine sehr schö­ne Abhand­lung gibt es von DL4ZAO im Netz, den Balun-Work­shop. Nach mei­nen Erfah­run­gen mit schon bei 100 Watt Bela­stung heiß­lau­fen­den Ring­ker­nen stell­te sich mir nun die Fra­ge, wie muß ich denn den Balun in der Pra­xis dimen­sio­nie­ren, damit er funk­tio­niert und nicht zu warm wird. Muß ich einen dicken Ring­kern mit Eco­flex-10 Kabel bewickeln oder darf es auch etwas klei­ne­res sein? Muß ich ihn mit hoch­wer­ti­gem Kabel bewickeln oder tut es (für die 100 Watt mei­nes IC-7300) auch preis­wer­tes RG174-Kabel?

Im oben genann­ten Work­shop wird der Strom-Balun als Man­tel­wel­len­sper­re emp­foh­len. Er hat den rie­sen­gro­ßen Vor­teil, daß die Ener­gie durch die Wick­lung fließt, also nicht durch den Kern. Dadurch ent­fal­len die Magne­ti­sie­rungs­ver­lu­ste und der Kern kann nicht in die Sät­ti­gung gera­ten. Der Nach­teil ist, daß er nicht trans­for­miert, die Ein­gangs­im­pe­danz ist also gleich der Aus­gangs­im­pe­danz. Wird eine Impe­danz­trans­for­ma­ti­on benö­tigt, kann man einen „Tra­fo“ dahin­ter­schal­ten und erhält einen Hybrid­ba­lun. Da die Ener­gie über die Wick­lung über­tra­gen wird, muß die­se Wick­lung den­sel­ben Wel­len­wi­der­stand auf­wei­sen, wie Ein- und Aus­gang, damit Refle­xio­nen ver­mie­den werden.

Eine ele­gan­te Art, den Ring­kern zu bewickeln, ist die Metho­de nach Rei­sert. Man bewickelt den Kern der­art mit einem Koax­ka­bel, daß man nach der hal­ben Win­dungs­zahl einen Sprung zur ande­ren Sei­te macht, ohne den Wickel­sinn zu ändern. Damit kom­men Ein- und Aus­gang auf gegen­über­lie­gen­de Sei­ten des Kerns zu lie­gen, was mecha­nisch meist von Vor­teil ist.

Wie schlägt sich nun ein sol­cher Balun, der mit RG174-Koax­ka­bel auf einem rela­tiv klei­nen FT140-77 Ring­kern auf­ge­wickelt ist. Das kann man rela­tiv schnell aus­pro­bie­ren. Hier ein Foto des Prototypen:

Balun
Balun aus 2 x 7 Win­dun­gen RG174 auf einem FT140-77 Ring­kern. Zu Test­zwecken sind SMA-Buch­sen angelötet.

Nach­fol­gend nun die Durch­gangs­dämp­fung die­ses Bal­uns, gemes­sen mit dem DG8SAQ-Netzwerkanalysator:

S21-Meßwerte
Die S21-Mes­sung. Ver­ti­ka­le Ska­lie­rung: 0.2 dB/Linie.

Das sieht nun gar­nicht so schlecht aus, wie befürch­tet. Die Dämp­fung bei 30 MHz ist 0.13 dB, wobei der Meß­feh­ler ver­mut­lich nicht ganz gering ist. Bei 100 Watt über­tra­ge­ner Lei­stung wür­den so etwa 3 W in dem Balun ver­bra­ten, bei nied­ri­ge­ren Fre­quen­zen weniger.

Mit SMA-UHF Adap­tern kann man die­sen Pro­to­ty­pen auch mal in die Anten­nen­lei­tung einschleifen.

Balun
Der­sel­be Balun mit UHF-Adap­tern zum Test am Funkgerät

Bei 100 Watt Sen­de­lei­stung wird der Balun auch nach eini­gen Minu­ten kaum fühl­bar wärmer.

Auch wenn die Wir­kung als Man­tel­wel­len­sper­re nun nicht gete­stet wur­de, ist das Ergeb­nis die­ses kur­zen Tests, daß das dün­ne RG174 auf dem klei­nen FT140-77 pro­blem­los mit 100 Watt betrie­ben wer­den kann.

Anten­nen­ro­tor

Es geht auf Weih­nach­ten zu und außer­dem wird näch­stes Jahr die Mehr­wert­steu­er wie­der auf 19% erhöht. Das ist für mich Grund genug, noch in die­sem Jahr ein paar Euro für Din­ge aus­zu­ge­ben, die ich eigent­lich erst im näch­sten Früh­jahr ange­hen woll­te. Dazu gehört die Erwei­te­rung der Anten­nen­an­la­ge. Ein 3m lan­ges Alu­mi­ni­um­rohr, das den jet­zi­gen 2m lan­gen Mast erset­zen soll, ist bestellt. An die­sen 3m-Mast kommt dann ein Anten­nen­ro­tor und dar­auf der jet­zi­ge 2m-Mast mit den Anten­nen. So kom­me ich im End­ef­fekt auf etwa 4m Höhe über dem obe­ren Bal­kon, was zum Erd­bo­den etwa 10m sind. Ohne eine ewig lan­ge Markt­for­schung zu betrei­ben, habe ich mich für den SPID RAK Rotor ent­schie­den. Weni­ge Tage nach der Bestel­lung lag er auf dem Tisch.

Antennenrotor RAK
Anten­nen­ro­tor RAK mit Steue­rung und Labor­netz­teil im Hintergrund

Der Rotor macht einen robu­sten Ein­druck, aber über die Zuver­läs­sig­keit kann ich im Moment noch nichts sagen. Er wird von einem 12-V-Motor über ein Schnecken­ge­trie­be gedreht. Das geht rela­tiv ruhig von­stat­ten. Ande­re berich­ten von Roto­ren mit Backen­brem­sen, die man im gan­zen Haus klacken hört. Das ist hier nicht der Fall.

Der Rotor selbst hat kei­nen mecha­ni­schen Anschlag, er kann belie­big oft im oder gegen den Uhr­zei­ger­sinn dre­hen. Pro Win­kel­grad wird ein Puls erzeugt, der dem Steu­er­ge­rät als Infor­ma­ti­on über den gedreh­ten Win­kel dient. Damit ist die Regel­schlei­fe geschlos­sen und man soll­te bes­ser von einem Regel­ge­rät als von einem Steu­er­ge­rät spre­chen, aber blei­ben wir bei Steue­rung. Nun­ja, per­fekt ist es nicht. Ich habe auf dem Spei­cher­os­zil­lo­skop auch mal einen Puls mehr gese­hen, als das Gerät. Es wird in der Pra­xis also hin und wie­der eine neue Kali­brie­rung nötig sein. Das ist aber kein Hexen­werk: Aus­rich­ten der Anten­ne nach Nor­den, bei gedrück­ter F‑Taste ein­schal­ten, fer­tig. Das Aus­rich­ten erfolgt elek­trisch per Steu­er­ge­rät, man muß also kei­nes­wegs mit dem Schrau­ben­schlüs­sel auf dem Mast klet­tern. Der Dreh­be­reich der Anten­ne ist in der Steue­rung auf 360° +/- 180° begrenzt. Man kann also in bei­den Rich­tun­gen um 180° über­dre­hen und soll­te die Län­ge der Anten­nen­ka­bel ent­spre­chend auslegen.

Die Steue­rung fin­de ich per­sön­lich sub­op­ti­mal. Die grü­nen 7‑Segment Anzei­gen bräuch­ten m.E. eine grü­ne Blen­de, damit die Anzei­ge bes­ser abzu­le­sen ist. Die Front­plat­te besteht aus einer ein­fa­chen auf­ge­kleb­ten Folie, die die Bedie­nung der dahin­ter­lie­gen­den Tasten erschwert.

Steuerung des Antennenrotors
Steue­rung des Anten­nen­ro­tors mit auf­ge­kleb­ter Frontblende

Die Folie lässt sich leicht zer­stö­rungs­frei abzie­hen, wodurch die Les­bar­keit der LED-Anzei­ge wei­ter abnimmt, aber die Bedie­nung der Tasten wesent­lich ver­ein­facht wird. Da wer­de ich gele­gent­lich eine eige­ne Front­plat­te frä­sen und ein grü­nes Fil­ter einbauen.

Steuerung des Antennenrotors
Steue­rung des Anten­nen­ro­tors mit abge­nom­me­ner Frontblende

Die Steue­rung hat lei­der kein ein­ge­bau­tes Netz­teil. Sie muß mit 12 V bis 18 V DC oder AC betrie­ben wer­den. Hier ist ein Labor­netz­teil ange­schlos­sen. Wenn der Motor dreht, flie­ßen etwa 300 mA, aber der Anlauf­strom liegt bei eini­gen Ampere. Ein test­wei­se ein­ge­setz­tes 19V/3A Netz­teil von einem Note­book war nicht aus­rei­chend. Beim Anlau­fen des Motors ist die Span­nung zusam­men­ge­bro­chen. Das führt zu der Fra­ge, wel­ches Kabel man zwi­schen Steue­rung und Rotor ver­wen­den soll­te. Das Hand­buch emp­fiehlt bei mehr als 10 m Kabel­län­ge einen Quer­schnitt von 1,42 mm² (#16 nach ame­ri­ka­ni­scher Norm) für den Motor, die Impuls­sen­sor­lei­tun­gen dür­fen dün­ner sein.

Anschluss zum Rotor
Der 4‑polige Anschluss zum Rotor

In der Pra­xis wird man vier­ad­ri­ge Schlauch­lei­tung mit vier gleich­dicken Adern ver­wen­den. Es bie­tet sich die rela­tiv preis­gün­sti­ge vier­ad­ri­ge H05VV‑F 4G1,5 PVC Schlauch­lei­tung an, die aller­dings für 300 V spe­zi­fi­ziert und daher mit über 9 mm Außen­durch­mes­ser zu dick für den oben gezeig­ten Stecker ist. Daher habe ich mich für FLRYY Fahr­zeug­lei­tung („KFZ-Anhän­ger­ka­bel“) ent­schie­den, die nur für 50 V spe­zi­fi­ziert ist, dafür aber nur 7 mm Außen­durch­mes­ser hat. Die­ses Kabel ist lei­der etwas teu­rer als das dickere.

Zum Betrieb wer­de ich zunächst das oben gezeig­te bil­li­ge Labor­netz­teil ver­wen­den. Das bie­tet außer­dem die Chan­ce, mir ein neu­es Netz­teil zu besor­gen. Im Moment läuft es auf die­ses Netz­teil hin­aus. Auch das ist eine Ent­schei­dung, die wegen der Mehr­wert­steu­er noch die­ses Jahr fal­len könnte.

Jetzt muß ich nur noch auf schö­nes Wet­ter war­ten und dann wird der Rotor montiert.