Neue CPU- und Relaistreiber-Boards

Nach­dem ich mich im ver­gan­ge­nen hal­ben oder drei­vier­tel Jahr mit dem Erwerb und Auf­bau einer neu­en CNC-Frä­se (eine Sor­otec BL1005) und der dazu­ge­hö­ri­gen Steue­rung beschäf­tigt habe, muss­te ich end­lich mal wie­der „etwas elek­tro­ni­sches“ machen. Die Frä­se läuft inzwi­schen, aber es fehlt noch drin­gend eine Umhau­sung und eine Min­der­men­gen­schmie­rung ins­be­son­de­re zum Frä­sen von Alu­mi­ni­um. Da steht noch eini­ges an Arbeit an. Aber das ist ein ganz ande­res The­ma, das ich gele­gent­lich auch noch beschrei­ben werde.

Für einen dem­nächst geplan­ten neu­en Anten­nen­tu­ner sol­len mehr als 16 bista­bi­le Relais ange­steu­ert wer­den. Das erfor­dert einen erwei­ter­ten Relais­trei­ber. Und wo wir schon dabei sind, kann auch das CPU-Board einen Update ver­tra­gen. Nötig gewe­sen wäre der aller­dings nicht.

Relais­trei­ber V1.2

Das alte Relais­trei­ber Board funk­tio­niert ein­wand­frei, hat aber nur vier high-side Trei­ber und acht low-side Trei­ber. Damit las­sen sich bei ent­spre­chen­dem Mul­ti­plex­ing bis zu 32 Relais­spu­len trei­ben. Beim Ein­satz bista­bi­ler Relais mit jeweils zwei Spu­len redu­ziert sich das dann aller­dings auf maxi­mal 16 Relais. Das reicht für einen Anten­nen­tu­ner mit acht geschal­te­ten Kon­den­sa­to­ren und acht geschal­te­ten Spu­len aus, aber sobald man auch nur die Kon­fi­gu­ra­ti­on zwi­schen L‑C und C‑L umschal­ten will, feht min­de­stens ein Relais. Daher habe ich ein neu­es Relais­trei­ber Board mit dop­pel­ter Anzahl an high-side Aus­gän­gen gebaut. Damit kön­nen nun bis zu 32 bista­bi­le Relais ange­steu­ert werden.

Durch die Aus­wahl einer vier­la­gi­gen Lei­ter­plat­te, den Ein­satz kleinst­mög­li­cher Gehäu­se­bau­for­men und Aus­nut­zung der Design-Regeln konn­ten fast alle Bau­tei­le auf einer Sei­te plat­ziert wer­den. Für Wider­stän­de und Kon­den­sa­to­ren wur­de fast durch­ge­hend die 0402 Packungs­grö­ße gewählt, ein ULN2803 low-side Trei­ber mit acht Kanä­len kommt im QFN-Gehäu­se zum Ein­satz. Kein Pro­blem bei auto­ma­ti­scher Bestückung. Wegen des Platz­ge­winns konn­te nun zusätz­lich noch ein 5 V‑Fest­span­nungs-Schalt­reg­ler ein­ge­baut wer­den. Es ist ein TI Simp­leS­wit­cher vom Typ LMR50410, der bis zu 36 V Ein­gangs­span­nung ver­trägt. Wegen der not­wen­di­gen Span­nungs­fe­stig­keit wur­den an des­sen Ein­gang etwas grö­ße­re Kon­den­sa­to­ren der Bau­form 0603 ein­ge­setzt. Die tat­säch­lich ver­wen­de­te Ein­gangs­span­nung wird 24 V nicht über­stei­gen. Daher wur­de eine SMBJ28A TVS-Schutz­di­ode ein­ge­baut, die zusam­men mit einer Siche­rung vor Span­nungs­spit­zen und Ver­po­lung schützt.

Durch den ULN2803 auf der auto­ma­tisch bestück­ten Sei­te bleibt nun auf der Gegen­sei­te genug Platz für zwei high-side Trei­ber vom Typ BTS724G, die dann aber hän­disch auf­ge­lö­tet wer­den müs­sen. Bei 50 mil Pin-pitch ist das kein Pro­blem. Außer­dem müs­sen die Prüf­pins und die Stift- und Sockel­lei­sten von Hand gelö­tet werden.

Hier nun die 3D-Ansich­ten von bei­den Sei­ten, der Schalt­plan im PDF-For­mat und die KiCad-Dateien.

Für die Spei­cher­dros­sel L33 und die Siche­rung F1 ist lei­der z.Zt. kein 3D-Modell vor­han­den, sie sind aber bestückt.

ATMEGA644PA CPU-Board V1.2

Auch das ATMEGA644PA-CPU Board V1.1 habe ich über­ar­bei­tet. Die­ses Board hat zwar auch zuver­läs­sig funk­tio­niert, aber die Bestückung von Hand ist doch müh­sam und feh­ler­an­fäl­lig. Außer­dem hat es den klei­nen Nach­teil, daß es mit einem Line­ar-Fest­span­nungs­reg­ler bestückt ist, der nur bis zu 18 V Ein­gangs­span­nung ver­trägt (abs max). Für die ursprüng­lich geplan­ten maxi­mal 12 V ist das völ­lig aus­rei­chend, aber inzwi­schen kam der Wunsch auf, auch 24 V Ein­gangs­span­nun­gen zu ver­wen­den und wenn mög­lich sogar mehr. Selbst die 12 V erzeu­gen eine unnö­ti­ge Ver­lust­lei­stung von 350 mW, wenn die CPU 50 mA Strom zieht. Das ist zwar kei­ne Lei­stung, die signi­fi­kant auf die Strom­rech­nung durch­schlägt, sich aber doch bei Dau­er­be­trieb doch auf immer­hin 3 kWh im Jahr auf­sum­miert. Das kostet bei den aktu­el­len Strom­prei­sen mehr als 1 € pro Jahr. Wer hät­te das gedacht?

Den­noch, das grö­ße­re Pro­blem ist die Erwär­mung des Boards und dadurch eine Ver­fäl­schung der Tem­pe­ra­tur­mes­sung. Es muss­te also wie beim Relais­trei­ber ein Schalt­reg­ler her. Hier fiel die Wahl auf einen ein­stell­ba­ren Schalt­reg­ler, den LMR16006YQ. Auch das ist ein Simp­leS­wit­cher von Texas Instru­ments, der im Bau­tei­le­ar­se­nal von JLCPCB als „Exten­ded Com­po­nent“ gegen einen ein­ma­li­gen Auf­preis zur Ver­fü­gung steht. Er ver­trägt sogar bis zu 60 V Ein­gangs­span­nung und kann durch exter­ne Beschal­tung mit pas­sen­den Wider­stän­den den gesam­ten Betriebs­span­nungs­be­reich des ATMEGA644PA von 1,8 V bis 5,0 V abdecken. Er lie­fert einen Aus­gangs­strom von bis zu 600 mA.

Hier die KiCad 3D-Ansicht des Boards:

der Schalt­plan als PDF-Datei:

und die KiCad Designfiles:

Das Wider­stands­netz­werk des Schalt­reg­lers ist so dimen­sio­niert, daß eine Aus­gangs­span­nung von 5 V erzeugt wird. Durch optio­na­le Bestückung eines wei­te­ren Wider­stands auf der Ober­sei­te der Pla­ti­ne, kann eine nied­ri­ge­re Aus­gangs­span­nung von bei­spiels­wei­se 3,3 V erzeugt wer­den. Es wur­de ein 18,432 MHz Quarz ein­ge­baut, der die Aus­wahl aller Stan­dard-Baud­ra­ten gestat­tet und auch eine exak­te 1ms- und 10ms-Inter­rupt-Peri­ode erzeugt. Das ist für den Erhalt von Datum und Uhr­zeit wichtig.

Betriebs­span­nun­gen und Einschränkungen

Alle ver­bau­ten Kom­po­nen­ten kön­nen mit Betriebs­span­nun­gen zwi­schen 3.0 V und 5.5 V betrie­ben wer­den. Bei Betriebs­span­nun­gen unter­halb von 3.0 V ist die Funk­ti­on des MAX14783 RS485-Trans­cei­vers nicht mehr gewähr­lei­stet. Unter­halb von 2.7 V sind auch der Tem­pe­ra­tur­sen­sor TMP275 und die Span­nungs­re­fe­renz REF5025 außer­halb ihrer Spe­zi­fi­ka­ti­on. Der Mikro­con­trol­ler kann zwi­schen 2.7 V und 5.5 V mit 10 MHz Takt­fre­quenz betrie­ben wer­den, ab 4.5 V mit bis zu 20 MHz. Sein full-swing Quarz­os­zil­la­tor arbei­tet von 2.7 V bis 5.5 V bis 20 MHz. Der ein­ge­bau­te 18,432 MHz Quarz funk­tio­niert also sowohl bei 3,3 V als auch 5.0 V nomi­na­ler Betriebs­span­nung. Unter­halb von 4,5 V muß dann aber die Takt­fre­quenz über die CLKDIV8 Fuse auf ein Ach­tel davon ein­ge­stellt wer­den. Die CPU läuft dann mit 2,304 MHz los und kann anschlie­ßend durch Schrei­ben des Clock Pre­s­ca­le Regi­sters CLKPR auf einen Tei­lungs­fak­tor von 2 ein­ge­stellt wer­den. Damit kann das Board bei 3.3 V mit 9,216 MHz betrie­ben werden.

Betriebs­span­nungATMEGA64418,432 MHz OszillatorMAX14783TMP275REF5025
1,8 V ~ 2,7 V
inter­nal osc, max 4 MHz
2,7 V ~ 3,0 V
Clk÷2
3,0 V ~ 4,5 V
Clk÷2
4,5 V ~ 5,5 V
Ein­schrän­kun­gen bei ver­schie­de­nen Betriebsspannungen

Der Con­trol­ler funk­tio­niert ab 1.8 V, dann aber nur mit maxi­mal 4 MHz Takt­fre­quenz und einer ande­ren Takt­quel­le als dem full-swing Oszil­la­tor. Das kann bei­spiels­wei­se einer der inter­nen Oszil­la­to­ren sein.

Ein­stel­len der Betriebsspannung

Die Aus­gangs­span­nung des Schalt­reg­lers wird durch das Wider­stands­netz­werk R6||R9 und R8 ein­ge­stellt. Auf dem Board ist R6 mit 56 kΩ bestückt, R8 mit 10 kΩ und R9 ist unbe­stückt. In der nach­fol­gen­den Glei­chung wer­den die par­al­lel­ge­schal­te­ten Wider­stän­de R6 und R9 als RA bezeich­net und UA ist die gewünsch­te Aus­gangs­span­nung. Dann ist RA fol­gen­der­ma­ßen zu wählen:

RA = ((UA * R8) / 0,765) – R8
oder
RA = ((UA * 10.000) / 0,765) – 10.000

Unter die­sen Bedin­gun­gen errech­net sich R9 zu:

R9 = R6 * RA / (R6 – RA)
oder
R9 = 56.000 * RA / (56.000 – RA)

Solan­ge R9 unbe­stückt bleibt, errech­net sich eine Betriebs­span­nung von 5.0 V. Für eine Betriebs­span­nung von 3.3 V muß R9 mit einem 82 kΩ Wider­stand bestückt werden.

Strom­auf­nah­me

Die Strom­auf­nah­me des gesam­ten CPU-Boards liegt bei höch­stens 50 mA. Der Schalt­reg­ler wur­de daher für etwa 100 mA aus­ge­legt, was auch noch die Ver­sor­gung eines spar­sa­men exter­nen Boards ermög­licht. Der Schalt­reg­ler kann bis zu 600 mA lie­fern. Falls deut­lich mehr Strom als 100 mA benö­tigt wird, soll­te eine wei­te­re Spei­cher­dros­sel auf L5 bestückt wer­den. Sie ist zur ein­ge­bau­ten Spei­cher­dros­sel par­al­lel­ge­schal­tet. Zur Berech­nung ihrer Induk­ti­vi­tät soll­te das Daten­blatt zu Rate gezo­gen wer­den. Eine Grö­ßen­ord­nung von 10 ~ 22 µH ist ein guter Anhalts­punkt. Der Schalt­reg­ler wird übri­gens mit 2,1 MHz getaktet.

Bat­te­rie­be­trieb

Das Board kann mit einer Stütz­bat­te­rie betrie­ben wer­den, die die Span­nungs­ver­sor­gung bei Netz­aus­fall über­nimmt. Für die­sen Fall muß R1 ent­fernt und die Dop­pel­schott­ky­di­ode D3 auf der Ober­sei­te bestückt wer­den. Die Bat­te­rie­span­nung darf nicht höher als die Ver­sor­gungs­span­nung sein. Es ist zu beach­ten, daß die Ver­sor­gungs­span­nung aller Kom­po­nen­ten in die­sem Fall um die Dioden­span­nung von 0,3 ~ 0,5 V sinkt.

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert