Ein neu­er Spek­trumana­ly­sa­tor muß her!

Vor­über­le­gun­gen

Die Histo­rie

Vor knapp zehn Jah­ren habe ich mir mei­nen ersten Spek­trumana­ly­sa­tor (SA) gekauft, einen DSA815-TG der Fir­ma Rigol. Es ist ein für Ama­teur­zwecke recht brauch­ba­res Gerät, das damals knapp 1500 Euro geko­stet hat und heu­te immer noch für gut 1000 Euro ver­füg­bar ist. Er hat aller­dings sei­ne Schwä­chen. Die klein­ste Auf­lö­sungs­band­brei­te (RBW) war sei­ner­zeit 100 Hz, konn­te durch einen Soft­ware­up­date aber auf 10 Hz redu­ziert wer­den. Das ist gar­nicht so schlecht, damit kann man arbei­ten. Als stö­rend erweist sich aber das rela­tiv hohe Pha­sen­rau­schen ins­be­son­de­re beim Mes­sen von Oszil­la­to­ren. Das Daten­blatt gibt für einen Abstand von 10 kHz einen Wert <-80dBc/Hz an. Es wird schlech­ter, je näher man an den Trä­ger kommt. Das ist, wenn über­haupt, nicht viel bes­ser als das Pha­sen­rau­schen eines selbst­ge­bau­ten Oszil­la­tors. Den kann man daher nicht qua­li­fi­ziert mes­sen, denn man kann das Pha­sen­rau­schen des Oszil­la­tors nicht von dem des SA unterscheiden.

Ein wei­te­rer klei­ner Nach­teil ist die Maxi­mal­fre­quenz von 1,5 GHz. Das ist natür­lich für alle Kurz­wel­len­bän­der inklu­si­ve 2 m und 70 cm völ­lig aus­rei­chend. Auf den ersten Blick reicht es auch für 23 cm, aber es kann ein Nach­teil sein, daß man da nicht ein­mal die zwei­te Ober­wel­le geschwei­ge denn die oft wich­ti­ge­re drit­te Ober­wel­le beob­ach­ten kann. Der Tracking­gene­ra­tor ist ein hilf­rei­ches Werk­zeug, um s21-Para­me­ter und mit einem exter­nen Richt­kopp­ler auch s11-Para­me­ter zu mes­sen, wenn auch bei­de nur ska­lar und nicht vek­to­ri­ell. Will man bei­spiels­wei­se ein Band­pass­fil­ter für das 23 cm Band mes­sen, dann ist es sehr hilf­reich, deut­lich über die Band­gren­zen hin­aus­zu­ge­hen und nicht gleich am Ban­den­de schon blind zu sein.

Der heu­ti­ge Stand der Technik

Kurz und gut, ich brau­che einen neu­en Spek­trumana­ly­sa­tor! Für Ama­teur­zwecke und Ama­teur­bud­gets kom­men nur Gerä­te chi­ne­si­scher Pro­ve­ni­enz in Fra­ge, dar­un­ter beson­ders die von Rigol und Sig­lent. Bei bei­den Her­stel­lern kann man aus einem brei­ten Preis- und Lei­stungs­spek­trum aus­wäh­len. Die erste Fra­ge, die jeder für sich sel­ber klä­ren muß, ist die, ob ein vek­to­ri­el­ler Netz­werk­ana­ly­sa­tor (VNA) ein­ge­baut sein soll. Einen Tracking­gene­ra­tor haben die mei­sten Gerä­te sowie­so ein­ge­baut und auch frei­ge­schal­tet. Da ist es zum VNA nicht mehr weit, aber ob der Auf­preis gerecht­fer­tigt ist, muß jeder sel­ber entscheiden.

Da ich bereits einen bis 1,3 GHz gut funk­tio­nie­ren­den VNA (von DG8SAQ) habe und mich die tech­ni­schen Daten der SA mit VNA nicht wirk­lich über­zeugt haben, habe ich mich auch wegen des Auf­prei­ses von etwa 600 Euro gegen den eige­bau­ten VNA ent­schie­den. Für etwa 660 Euro gibt es den LibreV­NA, der immer­hin bis 6 GHz nutz­bar ist. Letzt­lich habe ich mich daher für den Sig­lent SSA3032X Plus ohne ein­ge­bau­ten VNA ent­schie­den, der gera­de so in das ver­füg­ba­re Bud­get gepasst und mei­ne Anfor­de­run­gen erfüllt hat.

Daves Vor­ar­beit

EEV­blog-Dave hat in einem sei­ner sehens­wer­ten und unnach­ahm­li­chen Vide­os den Sig­lent SSA3021X mit dem Rigol DSA815 (Video #891) ver­gli­chen und in einem wei­te­ren Video (#892) auch den SSA3021X auf­ge­schraubt. Der Sig­lent SSA3021X ist funk­tio­nal weit­ge­hend iden­tisch mit dem SSA3032X Plus. Er ist aller­dings auf 2.1 GHz limi­tiert, hat kein Web­in­ter­face und kei­nen Touchscreen.

Ver­gleichs­mes­sun­gen des SSA3032X Plus gegen­über dem DSA815-TG

In die­sem Bei­trag wer­de ich eini­ge Ver­gleichs­mes­sun­gen der bei­den genann­ten Gerä­te durch­füh­ren und die jewei­li­gen Meß­er­geb­nis­se per Screen­shot dar­stel­len. Als Meß­ob­jek­te wur­de der Ama­teur­funk­trans­cei­ver IC-7300 und ver­schie­de­ne Test­schal­tun­gen ver­wen­det, die sich noch in der Bastel­ki­ste fan­den. Letz­te­re erhe­ben kei­ner­lei Anspruch auf tech­ni­sche Mei­ster­lei­stun­gen. Ganz im Gegen­teil, es sind zum Teil gefrä­ste Pro­to­ty­pen mit unter­durch­schnitt­li­cher Per­for­mance. Gera­de des­halb eig­nen sie sich aber gut, um als Ver­gleichs­ob­jek­te zu dienen.

Damit die­ser Arti­kel nicht über­la­den wird, ver­schie­be ich die ursprüng­lich geplan­ten Refle­xi­ons- und Trans­mis­si­ons­mes­sun­gen mit dem jeweils ein­ge­bau­ten Tracking­gene­ra­tor auf einen zwei­ten Teil. Hier wer­den also nur Spek­tren gemessen.

Rausch­pe­gel bei offe­nem Eingang

Genau wie Dave in sei­nem Video, schlie­ße ich erst mal gar­nichts an. Hier ist also das dar­ge­stell­te Rau­schen bei offe­nem Ein­gang, jeweils für RBW=VBW=1MHz (gelb), 100 kHz (rot) und 10 kHz (blau).

DS815-TG, Quelle: keine, Center: 750 MHz, Span: 1500 MHz, RBW=VBW: 1000/100/10 kHz, Attn: 0dB, PA ausgeschaltet
DS815-TG, Quel­le: kei­ne, Cen­ter: 750 MHz, Span: 1500 MHz, RBW=VBW: 1000÷100÷10 kHz, Attn: 0dB, PA ausgeschaltet
SSA3032X-Plus, Quelle: keine, Center: 750 MHz, Span: 1500 MHz, RBW=VBW: 1000/100/10 kHz, Attn: 0dB, PA ausgeschaltet
SSA3032X-Plus, Quel­le: kei­ne, Cen­ter: 750 MHz, Span: 1500 MHz, RBW=VBW: 1000÷100÷10 kHz, Attn: 0dB, PA ausgeschaltet

Dave spricht beim Rigol von ‑65 dBm, ‑75 dBm und ‑85 dBm und beim Sig­lent von ‑85 dBm, ‑90 dBm und ‑100 dBm (@ RBW=1 MHz, 100 kHz und 10 kHz), zumin­dest am Anfang des jewei­li­gen Fre­quenz­be­rei­ches. Das kann ich für den Rigol bestä­ti­gen, aber nicht ganz für den Sig­lent. Da mes­se ich jeweils etwa 2 bis 5 dB schlech­te­re Wer­te. Wie auch Dave schon fest­stellt, ist der Fre­quenz­gang beim Sig­lent glat­ter als beim Rigol.

Die näch­sten bei­den Screen­shots zei­gen die­sel­ben Mes­sun­gen mit ein­ge­schal­te­tem Vor­ver­stär­ker (pream­pli­fier, PA).

DS815-TG, Quelle: keine, Center: 750 MHz, Span: 1500 MHz, RBW=VBW: 1000/100/10 kHz, Attn: 0dB, PA eingeschaltet
DS815-TG, Quel­le: kei­ne, Cen­ter: 750 MHz, Span: 1500 MHz, RBW=VBW: 1000÷100÷10 kHz, Attn: 0dB, PA eingeschaltet
SSA3032X-Plus, Quelle: keine, Center: 750 MHz, Span: 1500 MHz, RBW=VBW: 1000/100/10 kHz, Attn: 0dB, PA eingeschaltet
SSA3032X-Plus, Quel­le: kei­ne, Cen­ter: 750 MHz, Span: 1500 MHz, RBW=VBW: 1000÷100÷10 kHz, Attn: 0dB, PA eingeschaltet

Hier bestä­ti­gen sich die von Dave gemes­se­nen Wer­te zumin­dest annä­hernd: ‑90 dBm, ‑100 dBm und ‑110 dBm beim Rigol und ‑102 dBm, ‑108 dBm und ‑120 dBm beim Sig­lent. Bei den ‑120 dBm muß ich aber schon bei­de Augen zudrücken.

Den­noch ist der Sig­lent sowohl mit als auch ohne PA 10 bis 15 dB bes­ser. Und nicht ver­ges­sen, Dave hat den SSA3021X gemes­sen und nicht den SSA3032X-Plus.

Spek­trum einer DDS mit AD9834

Ein klei­ner Ver­suchs­auf­bau mit einer AD9834 DDS Schal­tung (10-bit DAC) wird mit einem 75 MHz Quarz­os­zil­la­tor außer­halb sei­ner Spe­zi­fi­ka­ti­on betrie­ben, die für die gewähl­te Vari­an­te AD9834BRU eigent­lich nur 50 MHz zulässt. Die Aus­gangs­fre­quenz ist auf 10,7 MHz ein­ge­stellt. Das Tief­pass­fil­ter am Aus­gang ist nicht opti­miert, wie die Breit­band Spek­tral­ana­ly­se zeigt. Bei­de Gerä­te kön­nen eine Tabel­le der gemes­se­nen Peaks anzeigen:

DS815-TG, Quelle: AD9834, Center: 50 MHz, Span: 100 MHz, RBW: 10 kHz, VBW: 10 kHz mit Peak Tabelle
DS815-TG, Quel­le: AD9834, Cen­ter: 50 MHz, Span: 100 MHz, RBW: 10 kHz, VBW: 10 kHz mit Peak Tabelle

SSA3032X-Plus, Quelle: AD9834, Center: 50 MHz, Span: 100 MHz, RBW: 10 kHz, VBW: 10 kHz mit Peak Tabelle
SSA3032X-Plus, Quel­le: AD9834, Cen­ter: 50 MHz, Span: 100 MHz, RBW: 10 kHz, VBW: 10 kHz mit Peak Tabelle

Man erkennt die DDS-Takt­fre­quenz von 75 MHz, die ein­ge­stell­te Aus­gangs­fre­quenz von 10,7 MHz, die jewei­li­gen Spie­gel­fre­quen­zen bei 75 MHz +/- 10,7 MHz.

Nach­fol­gend soll nur das Spek­trum um 10,7 MHz mit ver­schie­de­nen Band- und Spann­brei­ten unter­sucht wer­den. Begin­nen wir bei einer Spann­brei­te von 1 MHz und einer RBW=VBW von 30 Hz:

DS815-TG, Quelle: AD9834, Center: 10.7 MHz, Span: 1 MHz, RBW: 30 Hz, VBW: 30 Hz
DS815-TG, Quel­le: AD9834, Cen­ter: 10.7 MHz, Span: 1 MHz, RBW: 30 Hz, VBW: 30 Hz

SSA3032X-Plus, Quelle: AD9834, Center: 10.7 MHz, Span: 1 MHz, RBW: 30 Hz, VBW: 30 Hz
SSA3032X-Plus, Quel­le: AD9834, Cen­ter: 10.7 MHz, Span: 1 MHz, RBW: 30 Hz, VBW: 30 Hz

Bei­de Gerä­te sehen den Trä­ger bei 10,7 MHz und etwa ‑9,5 dBm. Die gerin­gen Abwei­chun­gen sind irrele­vant und sie ändern sich bei jedem der Gerä­te mit jedem Durch­gang. Bei­de Gerä­te sehen auch die Spu­ren bei +/- 400 kHz bei knapp ‑90 dBm.

Eine wei­te­re Spur bei 10,6 MHz sieht aber nur der Rigol deut­lich, beim Sig­lent ver­schwin­det sie im Rau­schen. Außer­dem steigt das Rau­schen beim Sig­lent stär­ker an, als beim Rigol, je näher man dem Trä­ger kommt. Bei ‑80 dBm erreicht es ein Maxi­mum und sinkt in unmit­tel­ba­rer Nähe zum Trä­ger wie­der auf etwa ‑90 dBm ab. Die­ses Ver­hal­ten wur­de vom Her­stel­ler Sig­lent auf Nach­fra­ge bestä­tigt. Es ist auch nicht auf die­se Ein­stel­lun­gen beschränkt, son­dern es tritt tech­no­lo­gie­be­dingt auch bei ande­ren Fre­quen­zen auf. Das ist ein ech­ter Wehr­muts­trop­fen und ich war kurz davor, das Gerät zurück­zu­ge­ben. Daß ich es nicht getan habe, liegt im wesent­li­chen dar­an, daß ich für ein ähn­lich aus­ge­stat­te­tes Gerät von Rigol noch­mal 1k€ hät­te drauf­le­gen müs­sen. Man wird also wohl oder übel in die­ser Preis­klas­se doch ein paar Abstri­che machen müssen.

Der Rigol zeigt das Ver­hal­ten, das man erwar­tet: das Pha­sen­rau­schen steigt mit der Nähe zum Träger.

Hier noch die Sig­lent-Mes­sung mit einer Peak-Tabelle:

SSA3032X-Plus, Quelle: AD9834, Center: 10.7 MHz, Span: 1 MHz, RBW: 30 Hz, VBW: 30 Hz mit Peak Tabelle
SSA3032X-Plus, Quel­le: AD9834, Cen­ter: 10.7 MHz, Span: 1 MHz, RBW: 30 Hz, VBW: 30 Hz mit Peak Tabelle

Hier die Mes­sun­gen mit 100 kHz Spann­brei­te und RBW=100 Hz:

DS815-TG, Quelle: AD9834, Center: 10.7 MHz, Span: 100 kHz, RBW: 100 Hz, VBW: 100 Hz
DS815-TG, Quel­le: AD9834, Cen­ter: 10.7 MHz, Span: 100 kHz, RBW: 100 Hz, VBW: 100 Hz

SSA3032X-Plus, Quelle: AD9834, Center: 10.7 MHz, Span: 100 kHz, RBW: 100 Hz, VBW: 100 Hz
SSA3032X-Plus, Quel­le: AD9834, Cen­ter: 10.7 MHz, Span: 100 kHz, RBW: 100 Hz, VBW: 100 Hz

Es ist auch jeweils der Rausch­pe­gel im 10 kHz Abstand dar­ge­stellt. Er ist in bei­den Fäl­len kon­si­stent zur Breit­band­mes­sung, unter­schei­det sich aber um mehr als 12 dB. Der Unter­schied ist mit dem deut­lich schlech­te­ren Pha­sen­rau­schen des Rigol zu erklä­ren. Er ist mit <-80 dBm/Hz im 10 kHz Abstand spe­zi­fi­ziert, was bei der ein­ge­stell­ten RBW von 100 Hz 20 dB mehr, also ‑60 dBm erwar­ten lässt. Anders aus­ge­drückt: ein guter Teil des beim Rigol gezeig­ten Rau­schens kommt von sei­nem ein­ge­bau­ten Oszil­la­tor. Hier wür­de ich also dem Sig­lent mehr ver­trau­en, wenn­gleich der Abfall der Rau­schens in Trä­ger­nä­he auch in die­ser Auf­lö­sung noch deut­lich zu sehen ist.

Nach­fol­gend noch ohne Kom­men­ta­re wei­te­re Schmal­band­mes­sun­gen mit Spann­brei­ten von 10 kHz:

DS815-TG, Quelle: AD9834, Center: 10.7 MHz, Span: 10 kHz, RBW: 10 Hz, VBW: 10 Hz
DS815-TG, Quel­le: AD9834, Cen­ter: 10.7 MHz, Span: 10 kHz, RBW: 10 Hz, VBW: 10 Hz

SSA3032X-Plus, Quelle: AD9834, Center: 10.7 MHz, Span: 10 kHz, RBW: 10 Hz, VBW: 10 Hz
SSA3032X-Plus, Quel­le: AD9834, Cen­ter: 10.7 MHz, Span: 10 kHz, RBW: 10 Hz, VBW: 10 Hz

…und 1 kHz:

DS815-TG, Quelle: AD9834, Center: 10.7 MHz, Span: 1 kHz, RBW: 10 Hz, VBW: 1 Hz
DS815-TG, Quel­le: AD9834, Cen­ter: 10.7 MHz, Span: 1 kHz, RBW: 10 Hz, VBW: 1 Hz

SSA3032X-Plus, Quelle: AD9834, Center: 10.7 MHz, Span: 1 kHz, RBW: 10 Hz, VBW: 1 Hz
SSA3032X-Plus, Quel­le: AD9834, Cen­ter: 10.7 MHz, Span: 1 kHz, RBW: 10 Hz, VBW: 1 Hz

Bei die­sen sehr schmal­ban­di­gen Mes­sun­gen kommt das gerin­ge Pha­sen­rau­schen des Sig­lent voll zur Gel­tung. Statt ‑61 dBc beim Rigol sehen wir hier knapp ‑84 dBc im Abstand von 100 Hz zum Trä­ger. Außer­dem ist zu beach­ten, daß der Rigol bei die­sen Ein­stel­lun­gen 100 Sekun­den pro Sweep benö­tigt, der Sig­lent auf­grund der FFT aber nur 0,338 Sekun­den. Da macht das Mes­sen Spaß! Auch aus die­sem Grund woll­te ich das Gerät dann doch nicht wie­der hergeben.

Dar­über­hin­aus gestat­tet der Sig­lent Mes­sun­gen mit RBW=VBW=1Hz und mit einer Spann­brei­te von 100 Hz erhält man dann fol­gen­des hoch­auf­ge­lö­ste Meßergebnis:

SSA3032X-Plus, Quelle: AD9834, Center: 10.7 MHz, Span: 100 Hz, RBW: 1 Hz, VBW: 1 Hz, Average
SSA3032X-Plus, Quel­le: AD9834, Cen­ter: 10.7 MHz, Span: 100 Hz, RBW: 1 Hz, VBW: 1 Hz, Average

Nach die­ser Mes­sung ist das Pha­sen­rau­schen im Abstand von 10 Hz also ‑84 dBc. 

Mes­sun­gen des Sen­de­si­gnals eines ICOM IC-7300 Transceivers

Um auch die Meß­er­geb­nis­se eines hoch­wer­ti­gen Signals zu zei­gen, habe ich das Aus­gangs­si­gnal eines IC-7300 Trans­cei­vers von ICOM gemes­sen. Er wur­de bei 10,125 MHz auf nied­rig­ste Sen­de­lei­stung 1% ein­ge­stellt, was etwa 1 Watt, also 30 dBm ent­spre­chen soll­te. Der Spek­trumana­ly­sa­tor wur­de über einen 30 dB Abschwä­cher und einen wei­te­ren 10 dB Abschwä­cher ange­schlos­sen, so daß am Ein­gang etwa ‑10 dBm anlie­gen. Alle Mes­sun­gen sind in der Betriebs­art AM durch­ge­führt wor­den, wobei optio­nal ein 2 kHz Sinu­ssi­gnal an den Audio­ein­gang ange­legt wur­de. Es wird vom PC gespeist, des­sen Audio­pe­gel auf 15% oder 71% ein­ge­stellt wur­de. Das sind will­kür­li­che und rela­ti­ve Pegel, die kei­ne Rück­schlüs­se auf den tat­säch­li­chen abso­lu­ten Signal­pe­gel zulassen.

Der unmo­du­lier­te Trä­ger wird mit etwa ‑8 dBm ange­zeigt, was also +32 dBm Ein­gangs­pe­gel vor den Abschwä­chern ent­spricht. Das wären 1,6 Watt, was in der Betriebs­art AM aber nur 50% der Aus­gangs­lei­stung sind. Tat­säch­lich ent­spricht damit die ein­ge­stell­te Aus­gangs­lei­stung von 1% also tat­säch­lich 3 Watt. Das ist in Ord­nung, gera­de im unte­ren Bereich ist die Ein­stel­lung der Aus­gangs­lei­stung sicher nicht sehr genau.

Der Über­sicht­lich­keit hal­ber sind die Meß­er­geb­nis­se nach­fol­gend als Gale­rie ein­ge­fügt. Klicken auf eine Mes­sung öff­net das jewei­li­ge Bild in vol­ler Auf­lö­sung in einem neu­en Tab.

Der SSA3032X-Plus kann Spek­tren auch als Was­ser­fall­dia­gramm dar­stel­len. Das ist beson­ders hilf­reich bei Signa­len mit klei­nen Pegeln. Man erkennt optisch sehr schnell, wo noch „Schmutz“ im Spek­trum ist.

SSA3032X-Plus, Quelle: IC7300, Center: 10.125 MHz, Modulation: 2kHz@15%, Span: 5 kHz, RBW: 3 Hz, Spectrum display
SSA3032X-Plus, Quel­le: IC7300, Cen­ter: 10.125 MHz, Modu­la­ti­on: 2kHz@15%, Span: 5 kHz, RBW: 3 Hz, Spec­trum display

Die­se Mes­sung zeigt das mit 2 kHz sehr schwach AM-modu­lier­te Signal. Man erkennt deut­lich die Sei­ten­bän­der im Abstand von 2 kHz, aber auch win­zi­ge Sei­ten­band­si­gna­le um den Trä­ger her­um. In der Dar­stel­lung des Spek­trums wür­de man sie wahr­schein­lich als unkor­re­lier­tes Pha­sen­rau­schen übersehen.

Abschlie­ßend noch das Breit­band­spek­trum zwi­schen 1 MHz und 40 MHz:

Bei­de Gerä­te erken­nen neben dem Trä­ger auch die zwei­te und drit­te Ober­wel­le. Es gibt eine Dis­kre­panz über die jewei­li­gen Pegel, was mut­maß­lich der rela­tiv hohen Auf­lö­sungs­band­brei­te von 1 kHz geschul­det ist. Beson­ders beim Rigol füh­ren gerin­ge Auf­lö­sungs­band­brei­ten aber zu sehr lan­gen Meß­zei­ten, was ich hier ver­mei­den wollte.

Außer­dem fällt auf, daß der Rausch­pe­gel unter­halb von etwa 18 MHz um 10 bis 15 dB erhöht ist. Das ist mut­maß­lich auf ein Aus­gangs­fil­ter im IC-7300 zurückzuführen.

Zusam­men­fas­sung

Im Ver­gleich zur vor­he­ri­gen Genera­ti­on, zu der ich den Rigol DSA815-TG zäh­le, haben die Sig­lent SSA3000X Spek­trumana­ly­sa­to­ren erheb­li­che Fort­schrit­te gemacht. Die Bild­schirm­auf­lö­sung ist von 800×460 Pixeln und 8″ Dis­play auf 1024×600 Pixel und ein 10.1″ Touch-Dis­play gestie­gen, die Meß­ge­schwin­dig­keit wur­de durch die ein­ge­bau­te FFT enorm erhöht und die Auf­lö­sungs­band­brei­te wur­de auf 1 Hz redu­ziert. Gleich­zei­tig wur­de das Pha­sen­rau­schen um min­de­stens 15 dB redu­ziert, beim Rigol waren es ‑80 dBc/Hz, beim Sig­lent ‑95 dBc/Hz, jeweils im 10 kHz Abstand.

Ein nicht leicht zu ver­dau­en­der Wehr­muts­trop­fen ist die oben gezeig­te min­de­stens 10 dB Rau­sch­über­hö­hung im Abstand von +/- 50 kHz zum Trä­ger. Das mag für die eine oder ande­re Anwen­dung ein K.O.-Kriterium sein. Ich den­ke aber, daß sich in der Preis­klas­se zur Zeit nichts bes­se­res fin­den lässt. Wenn man das Ver­hal­ten kennt, wird man damit leben kön­nen, zumal der Effekt gerin­ger wird, wenn der Trä­ger aus dem Sicht­feld bewegt wird.

Trotz der oben beschrie­be­nen Schwä­che wür­de ich den SSA3032X Plus, bzw. einen sei­ner Geschwi­ster, den SSA3015X Plus, SSA3021X Plus oder gar den SSA3075X Plus empfehlen.

Vor­schau auf Teil 2

Im näch­sten Teil wer­de ich eini­ge Mes­sun­gen mit den ein­ge­bau­ten Tracking­gene­ra­to­ren zei­gen. In der Bastel­ki­ste fin­den sich ein paar gefrä­ste Fil­ter­schal­tun­gen, z.B. ein 1,4 GHz Strei­fen­lei­tungs­fil­ter und ein 800 MHz Band­paß­fil­ter. Bei­de Fil­ter wur­den mit dem Ansoft Desi­gner SV2 ent­wor­fen und auf FR‑4 Basis­ma­te­ri­al gefräst. Auch ein Fil­ter mit ein­ge­bau­tem MMIC Ver­stär­ker soll­te für Bei­spiel­mes­sun­gen ver­wend­bar sein.

Mit einer eben­falls auf FR‑4 gefrä­sten 23 cm Patch-Anten­ne und einem exter­nen Richt­kopp­ler wer­de ich Refle­xi­ons­mes­sun­gen durchführen.

Das wird alles ein paar Tage dau­ern, stay tuned…