Draht­an­ten­ne für alle Kurz­wel­len-Ama­teur­funk­bän­der (Teil 2)

In einem frü­he­ren Bei­trag habe ich die Pla­nun­gen für eine neue Kurz­wel­len­an­ten­ne beschrie­ben. Ihr Auf­bau und ihre Abmes­sun­gen sind durch die ört­li­chen Gege­ben­hei­ten bestimmt, nicht durch die Erwar­tung, eine neue Wun­der­an­ten­ne zu erfin­den. Da die Dimen­si­on des Grund­stücks nicht für einen Lang­draht-Dipol reicht, der auch die unte­ren Kurz­wel­len­bän­der 160 m und 80 m abdeckt, wur­den bei­de Anten­nen­dräh­te nach unten gefal­tet und im Abstand von 2 m wie­der zurück­ge­führt. Hier die von der ursprüng­li­chen Pla­nung etwas abwei­chen­de Dimensionierung:

Tatsächliche Dimensionierung der gefalteten Langdrahtantenne
Tat­säch­li­che Dimen­sio­nie­rung der gefal­te­ten Langdrahtantenne

Die gefal­te­ten Tei­le sind also zu lang, weil es deut­lich kosten­gün­sti­ger ist, sie nach der Erpro­bung zu kür­zen, als den gesam­ten Draht zu erset­zen. Damit han­delt es sich um einen asym­me­tri­schen Dipol, der deut­lich außer­halb des Zen­trums gespeist wird. Er wird also bei sei­nen Reso­nan­zen weit von dem gewünsch­ten reel­len Wider­stand von 50 Ω lie­gen. Eini­ge hun­dert Ohm bis über 1 kΩ sind zu erwar­ten, wie die ersten Simu­la­tio­nen zei­gen. Ein Tuner wird also nötig sein, denn das Steh­wel­len­ver­hält­nis liegt jen­seits des­sen, das der ein­ge­bau­te Tuner des IC7300 anpas­sen kann.

Der Spei­se­punkt der Anten­ne liegt in etwa 5 m Höhe und das Gelän­de hat ein Gefäl­le von etwa 15°. Das führt dazu, daß der süd­li­che Arm ver­meint­lich nur etwa 3 m über dem Gelän­de ist, tat­säch­lich aber in etwa 8 m Höhe auf­ge­hängt ist. Das mach­te die Bewer­tung mit Watt­wäch­ter unbrauch­bar, weil die vor­ge­schrie­be­nen Abstän­de nicht ein­zu­hal­ten waren. Daher habe ich nun für die Simu­la­ti­on bei­de Arme der Anten­ne um die Y‑Achse gedreht und zwar um die genann­ten 15° Gefäl­le. Es wird also so gerech­net, als wäre das Gelän­de hori­zon­tal und die Anten­ne wür­de um 15° nach oben geneigt zur Erd­ober­flä­che ste­hen. Damit sind die simu­lier­ten magne­ti­schen und elek­tri­schen Feld­stär­ken der Anten­ne auch mit Watt­wäch­ter zur Anmel­dung bei der Bun­des­netz­agen­tur ver­wend­bar. Auch Watt­wäch­ter hät­te die Anten­ne dre­hen kön­nen, das ist mir aber nicht gelungen.

4nec2 Simu­la­ti­on mit tat­säch­li­chen Maßen

Hier ist die Ein­ga­be­da­tei mit den tat­säch­li­chen Abmes­sun­gen der Anten­ne für die 4nec2-Simulation:

Breit­band­si­mu­la­ti­on

Hier zunächst die Simu­la­ti­ons­er­geb­nis­se der tat­säch­lich auf­ge­bau­ten Antenne:

Simulationsergebnis der Langdrahtantenne, SWR zwischen 1 und 30 MHz
Simu­la­ti­ons­er­geb­nis der Lang­draht­an­ten­ne, SWR zwi­schen 1 und 30 MHz

Simulationsergebnis der Langdrahtantenne, Impedanz zwischen 1 und 30 MHz
Simu­la­ti­ons­er­geb­nis der Lang­draht­an­ten­ne, Impe­danz zwi­schen 1 und 30 MHz

Simulationsergebnis der Langdrahtantenne, Smith Diagramm zwischen 1 und 30 MHz
Simu­la­ti­ons­er­geb­nis der Lang­draht­an­ten­ne, Smith Dia­gramm zwi­schen 1 und 30 MHz

Das Smith-Dia­gramm zeigt in schwarz den Kreis mit einem SWR=3.

Man erkennt sofort die Reso­nan­zen bei etwa 3,2 MHz, 6,1 MHz, 9,1 MHz und 15,3 MHz. Wei­te­re und weni­ger aus­ge­präg­te Reso­nan­zen gibt es bei 18,2 MHz, 21,7 MHz und 27,6 MHz. Die Reso­nan­zen lie­gen also unter­halb der Ama­teur­funk­bän­der, die Anten­ne ist zu lang und muß gekürzt wer­den. Das soll aber im Moment mal egal sein, die span­nen­de Fra­ge ist ja, was denn die Mes­sung mit dem „Ohmmeter für Hoch­fre­quenz“ ergibt. Hier die Meß­er­geb­nis­se der real auf­ge­bau­ten Anten­ne mit dem DG8SAQ VNWA:

Reale Impedanzmessung des Mehrband-Dipols von 1 bis 30 MHz
Rea­le Impe­danz­mes­sung des Mehr­band-Dipols von 1 bis 30 MHz

Die gemes­se­nen Reso­nan­zen lie­gen bei 2,8 MHz, 6,1 MHz, 9,2 MHz, 15,2 MHz, 18,5 MHz, 23,5 MHz und 27,9 MHz. Sie lie­gen also tat­säch­lich nicht weit neben den simu­lier­ten Werten.

Jetzt gilt es, die Anten­ne auf die Ama­teur­funk­bän­der zu trim­men. Durch Kür­zen des unte­ren gefal­te­ten Teils um 5,50 m, näm­lich von 14 m auf 8,50 m, ergibt die Simu­la­ti­on nun fol­gen­des Ergebnis:

Simulationsergebnis der gekürzten Langdrahtantenne, SWR zwischen 1 und 30 MHz
Simu­la­ti­ons­er­geb­nis der gekürz­ten Lang­draht­an­ten­ne, SWR zwi­schen 1 und 30 MHz

Simulationsergebnis der gekürzten Langdrahtantenne, Impedanz zwischen 1 und 30 MHz
Simu­la­ti­ons­er­geb­nis der gekürz­ten Lang­draht­an­ten­ne, Impe­danz zwi­schen 1 und 30 MHz

Simulationsergebnis der gekürzten Langdrahtantenne, Smith Diagramm zwischen 1 und 30 MHz
Simu­la­ti­ons­er­geb­nis der gekürz­ten Lang­draht­an­ten­ne, Smith Dia­gramm zwi­schen 1 und 30 MHz

Jetzt lie­gen die Reso­nan­zen bei 3,7 MHz, 7,1 MHz, 10,3 MHz, 13,8 MHz, 17,3 MHz, 21,0 MHz und 27,8 MHz. Die Steh­wel­len­ver­hält­nis­se sind dort jeweils unter 20, was ein Tuner dann eben anpas­sen kön­nen muß.

Damit ist das wei­te­re Vor­ge­hen klar, die Anten­ne muß gekürzt wer­den. Das erfor­dert aber bes­se­res Wet­ter und wird dann erst zu gege­be­ner Zeit stattfinden.

Die elek­tri­schen und magne­ti­schen Fel­der der hier simu­lier­ten Anten­ne wur­den mit Watt­wäch­ter aus­ge­wer­tet und bei der Bun­des­netz­agen­tur ange­mel­det. Das funk­tio­niert im Prin­zip ganz gut, aber es gibt eini­ge Stol­per­stei­ne und uner­klär­li­che kryp­ti­sche Feh­ler­mel­dun­gen. Das soll dann bei Gele­gen­heit in einem eige­nen Arti­kel beschrie­ben wer­den. Auch die Mes­sun­gen an der gekürz­ten Anten­ne wer­de ich nach­lie­fern, sobald sie durch­ge­führt sind.

Hier ist der erste Teil.

Falt­di­pol für das 15-m-Band

Den hier bereits beschrie­be­nen Falt­di­pol für das 17-m-Band habe ich nun gekürzt und für 15 m umge­baut. Er war auf 17 m sowie­so noch nicht ganz reso­nant und ich hat­te den Ehr­geiz, mit dem Fuß­punkt­wi­der­stand näher an 50 Ω zu kom­men. Das gelingt am ein­fach­sten durch das Ver­kür­zen der gefal­te­ten Tei­le des Dipols, wodurch sich dann der nicht gefal­te­te Teil ver­län­gert. Die Gesamt­län­ge der Strahl­erhälf­ten muß ja gleich blei­ben, denn sonst ver­schiebt man die Reso­nanz. Das hät­te beim 17-m-Band nicht mehr ganz auf die ver­füg­ba­re Län­ge des Bal­kons gepasst.

Durch ite­ra­ti­ves Aus­pro­bie­ren haben sich nun die hier doku­men­tier­ten Dimen­sio­nen ergeben:

Mechanische Abmessungen des 15-m-Faltdipols

Hier die s11 Mess­wer­te, gemes­sen mit dem DG8SAQ VNWA:

s11 Messwerte des fertig installierten 15-m-Faltdipols
s11 Mess­wer­te des fer­tig instal­lier­ten 15-m-Faltdipols

Die rote Kur­ve zeigt die Impe­danz im Smith-Dia­gramm und die grü­ne Kur­ve das Steh­wel­len­ver­hält­nis. Die blau­en Krei­se kenn­zeich­nen die SWR=2 und SWR=3 Gren­zen. Die Mar­ker sind auf Band­an­fang, Band­mit­te und Band­ende des 15-m-Ban­des gesetzt. Das Steh­wel­len­ver­hält­nis ist über das gan­ze Band deut­lich unter 2. Man erkennt auch, daß das Ziel erreicht wur­de, mög­lichst nahe an eine reel­le Impe­danz von 50 Ω zu kommen.

Abschlie­ßend noch ein paar Fotos, die die mecha­ni­sche Kon­struk­ti­on zeigen.

Aufhängung an der südöstlichen Seite.
Auf­hän­gung an der süd­öst­li­chen Seite.

An jeder Dop­pel­rol­le ist eine Augen­schrau­be zur Befe­sti­gung ange­bracht. Auf die­ser Sei­te ist ein Draht­span­ner mon­tiert, über den die Anten­ne stramm­ge­zo­gen wird. Der Abstand zur Dach­rin­ne beträgt nur eini­ge Zen­ti­me­ter, was mut­maß­lich nicht ohne Rück­wir­kung auf die oben gemes­se­ne Impe­danz bleibt.

Aufhängung an der nordwestlichen Seite.
Auf­hän­gung an der nord­west­li­chen Seite.

Auf der nord­west­li­chen Sei­te wur­de nun eine Feder ein­ge­baut. Sie soll schlag­ar­ti­ge Bela­stun­gen bei star­ken Stür­men etwas abfe­dern. Es ist nicht aus­zu­schlie­ßen, daß sich dadurch bei bestimm­ten Fre­quen­zen mecha­ni­sche Reso­nan­zen erge­ben, die kon­tra­pro­duk­tiv sind. Idea­ler­wei­se müss­te noch ein Dämp­fungs­glied ein­ge­baut wer­den, aber man kann’s auch über­trei­ben. Den­noch, ich wer­de das beobachten.

Zugseil zwischen den gefalteten Teilen des Dipols (oben).
Zug­seil zwi­schen den gefal­te­ten Tei­len des Dipols (oben).

Zug­seil und Dipol sind jeweils mit Kau­schen ver­se­hen und mit Seil­klem­men aus Edel­stahl befe­stigt. Zum ein­fa­chen Lösen der Ver­bin­dung sind han­dels­üb­li­che Kara­bi­ner­ha­ken ein­ge­setzt, natür­lich eben­falls aus Edel­stahl. Es macht Spaß, mit ordent­li­chem Werk­zeug und ordent­li­chen Bau­tei­len zu arbeiten.

Falt­di­pol für das 17-m-Band

Som­mer­zeit ist Anten­nen­bau­zeit. Jetzt müs­sen die Außen­ar­bei­ten statt­fin­den, damit man im Win­ter mög­lichst nicht aus dem Haus muß. Pro­gram­mier­ar­bei­ten und der war­me Löt­kol­ben müs­sen war­ten, bis die Tage wie­der kür­zer wer­den und die Tem­pe­ra­tu­ren fallen.

Mei­ne end­ge­spei­ste Draht­an­ten­ne war von Anfang an ein Pro­vi­so­ri­um, das eigent­lich nur als Pro­of-of-Con­cept gedacht war. Sol­che Pro­vi­so­ri­en hal­ten bekannt­lich lan­ge, aber wenn der Mast dann durch Wit­te­rungs­ein­flüs­se irgend­wann wind­schief wird, ist es Zeit für Ver­bes­se­run­gen. Von einem 20 m lan­gen Draht kann man­cher Stadt­be­woh­ner im Miets­haus nur träu­men, den­noch ist er für die unte­ren Kurz­wel­len­bän­der zu kurz. 40 m Gesamt­län­ge, wie sie für das 80-m-Band benö­tigt wer­den, wären bei mir gera­de so mach­bar, wür­den aller­dings den Zorn der Ehe­frau wecken, denn der freie Blick auf den Don­ners­berg wür­de doch arg verschandelt.

Es muß daher im Prin­zip bei den 20 m blei­ben, ein paar Meter mehr wären wohl ein mög­li­cher Kom­pro­miß. Daher pla­ne ich, einen Falt­di­pol zu bau­en, also einen Draht vom Bal­kon zum Mast, dann eine gewis­se Strecke am Mast abwärts und wie­der zurück zum Bal­kon. Damit die bis­he­ri­ge end­ge­spei­ste Anten­ne einem mit­tig gespei­sten Dipol mit nied­ri­ge­rem Strah­lungs­wi­der­stand etwas näher kommt, soll auf der ent­ge­gen­ge­setz­ten Sei­te ein ähn­lich gestal­te­ter Strah­ler auf­ge­baut wer­den, aller­dings reicht es dort mal gera­de für fünf bis acht Meter. Das ist aber immer noch bes­ser, als der jet­zi­ge Pig­tail von etwa 2m Länge.

Ein klei­ner Anfang

Um zu sehen, ob das Pro­jekt über­haupt prin­zi­pi­ell funk­tio­nie­ren kann, soll ein ähn­li­cher Falt­di­pol mit klei­ne­ren Abmes­sun­gen gebaut wer­den. Die fol­gen­de Zeich­nung zeigt den prin­zi­pi­el­len Aufbau.

Der Dipol soll also sym­me­trisch sein und mit­tig gespeist wer­den. Die Gesamt­län­ge jedes Arms teilt sich in die Strecken Lu/2, Lv und Lo auf. Bei der Auf­tei­lung der Strecken gibt es in mei­nem Fall eini­ge Rand­be­din­gun­gen einzuhalten:

  • Die Län­gen Lu/2 + Lv + Lo defi­nie­ren, wie zu erwar­ten, die Resonanzfrequenz.
  • Da der Dipol kom­plett auf den Bal­kon pas­sen soll, darf die Län­ge Lu nicht grö­ßer als etwa 4,60 m sein.
  • Damit die gan­ze Kon­struk­ti­on hand­lich und sta­bil bleibt, soll Lv etwa 25 cm lang sein.
  • Durch Simu­la­tio­nen mit 4nec2 fin­det man empi­risch, daß das Ver­hält­nis Lo/Lu den Real­teil des Fuß­punkt­wi­der­stan­des defi­niert. Qua­li­ta­tiv: je klei­ner Lo/Lu wird, desto grö­ßer wird der reel­le Fuß­punkt­wi­der­stand. Bei prak­ti­ka­blen Län­gen vari­iert er zwi­schen etwa 35 und 60 Ω.

Der bei der bis­he­ri­gen Draht­an­ten­ne ver­wen­de­te Stahl­draht (eigent­lich ein Wei­de­zaun­draht) ist zwar preis­gün­stig, aber für Anten­nen natür­lich sub­op­ti­mal. Er ist rela­tiv dünn und sein ohm­scher Wider­stand ist zu hoch, um eine effi­zi­en­te Anten­ne zu bau­en. Daher habe ich nun ein paar Euro mehr inve­stiert und ins­ge­samt 100 m hoch­wer­ti­ge Anten­nen­lit­ze besorgt. Sie besteht aus ver­zinn­ten Kup­fer­adern und hat zur bes­se­ren Län­gen­sta­bi­li­tät einen Kev­lar Kern. Hier die tech­ni­schen Daten:

1 x 0,4 mm Kevlar Kern
24 x 0,25 mm verzinntes Kupfer
Kupferabschnitt: 1,2 mm2
Gewicht: 14 Gramm pro Meter
UV-beständige schwarze PE-Isolierung
Gesamtdurchmesser +/-2,5 mm
Zugkraft ca. 50kg

Expe­ri­men­tell wur­de ein Ver­kür­zungs­fak­tor von 0,89 bestimmt. Der ist lei­der nicht in der Spe­zi­fi­ka­ti­on zu fin­den. Mit die­sen Daten kann man nun ver­nünf­ti­ge 4nec2-Simu­la­tio­nen durchführen.

Wegen der oben genann­ten Rand­be­din­gun­gen bie­tet sich eine Kon­struk­ti­on für das 17-m-Band oder das 15-m-Band an. Zunächst war der tat­säch­li­che Ver­kür­zungs­fak­tor unbe­kannt und so wur­de der Dipol mit der bau­lich maxi­mal mög­li­chen Dimen­sio­nie­rung auf­ge­baut: Lu=4,60 m, Lv=0,25 m und Lo=2 m. Das soll­te bei einem maxi­mal mög­li­chen Ver­kür­zungs­fak­tor von 1,0 für das 15-m-Band rei­chen. Tat­säch­lich war der Dipol auf etwa 16,4 MHz reso­nant, wor­aus sich dann der genann­te Ver­kür­zungs­fak­tor von etwa 0,89 errech­ne­te. Durch Kür­zen der Lo-Schen­kel auf 1,59 m wur­de dann eine Reso­nanz knapp unter­halb des 17-m-Ban­des bei etwa 17,9 MHz erreicht. Das wäre durch wei­te­res Kür­zen leicht zu ver­bes­sern, aber letzt­lich ist das Ziel doch das 15-m-Band. Abge­zwackt ist schnell, daher hier zunächst mal die Gegen­über­stel­lung der Simu­la­ti­on mit der tat­säch­li­chen Messung:

17-m-Faltdipol, SWR (simuliert mit 4nec2)
17-m-Falt­di­pol, SWR (simu­liert mit 4nec2)

Der Dipol ist bei knapp 18 MHz reso­nant und das Steh­wel­len­ver­hält­nis liegt bei etwa 1,3.

17-m-Faltdipol, Smithdiagramm (simuliert mit 4nec2)
17-m-Falt­di­pol, Smit­h­dia­gramm (simu­liert mit 4nec2)

Das Smith-Dia­gramm zeigt bei Reso­nanz eine reel­le Impe­danz von etwa 38 Ω. Der schwar­ze Kreis zeigt die Punk­te mit einem Steh­wel­len­ver­hält­nis von 3. Alle Impe­dan­zen inner­halb die­ses Krei­ses kön­nen vom ein­ge­bau­ten Anten­nen­tu­ner des IC7300 ange­passt werden.

17-m-Faltdipol, Fernfeld (simuliert mit 4nec2)
17-m-Falt­di­pol, Fern­feld (simu­liert mit 4nec2)

Das Richt­dia­gramm zeigt die zu erwar­ten­de Cha­rak­te­ri­stik. Bei der Auf­hän­gung im kon­kre­ten Fall in Rich­tung Süd­ost-Nord­west dürf­te also eine bevor­zug­te Strah­lungs­rich­tung nach Süd­ame­ri­ka und Russland/Japan zu erwar­ten sein. Austra­li­en und Nord­ame­ri­ka dürf­ten eher schwie­rig werden.

17-m-Faltdipol, gemessen mit DG8SAQ VNWA
17-m-Falt­di­pol, gemes­sen mit DG8SAQ VNWA

Die tat­säch­li­che Mes­sung mit dem DG8SAQ Netz­werk­ana­ly­sa­tor liegt erstaun­lich nahe an der Simu­la­ti­on. Das liegt einer­seits natür­lich an dem Ver­kür­zungs­fak­tor, der aus der Mes­sung im Ver­gleich zur Simu­la­ti­on so errech­net wur­de, daß die simu­lier­te Reso­nanz­fre­quenz mit der tat­säch­li­chen über­ein­stimmt. Dar­über­hin­aus liegt aber auch der gemes­se­ne reel­le Fuß­punkt­wi­der­stand bei genau den simu­lier­ten 38 Ω. Die blau­en Krei­se sind die SWR=2 und SWR=3 Gren­zen. Zwi­schen 17,22 MHz und 18,35 MHz liegt das SWR also unter 3.

Hier ist die 4nec2-Datei, falls jemand selbst die Simu­la­tio­nen nach­voll­zie­hen will.

Der mecha­ni­sche Aufbau

Damit die Kon­struk­ti­on sta­bil, zuver­läs­sig und wet­ter­fest wird, habe ich zwei Dop­pel­rol­len aus Hart-PVC gefräst, die den Anten­nen­draht hal­ten und führen.

Gefräste Doppelrolle als Antennenhalter
Gefrä­ste Dop­pel­rol­le als Antennenhalter

Die Rol­len bestehen aus drei ver­kleb­ten und ver­schraub­ten Tei­len. Der inne­re Teil wur­de aus 3 mm dicken PVC Plat­ten gefräst, die bei­den äuße­ren wei­ßen Schei­ben sind 2 mm dick. Der Radi­us der inne­ren Schei­be bestimmt den Bie­ge­ra­di­us der Anten­nen­lit­ze. Dafür ist zwar kein Mini­mum spe­zi­fi­ziert, aber die gewähl­ten 50 mm (also 100 mm Durch­mes­ser) schei­nen hin­rei­chend groß zu sein. Die äuße­ren Schei­ben haben einen Durch­mes­ser von 120 mm, so daß rund­um 10 mm Platz sind, um den Anten­nen­draht auf der Rol­le zu hal­ten. Wenn man, wie in die­sem Fall auf dem Bal­kon, an alle Rol­len gut her­an­kommt, um einen Draht wie­der ein­zu­fä­deln, ist das völ­lig aus­rei­chend. Wenn der Draht erst ein­mal gespannt ist, bleibt er auch auf der Rol­le. Für die geplan­te Kon­struk­ti­on der län­ge­ren Anten­ne muß eine Lasche von oben das Her­aus­fal­len des Anten­nen­drah­tes verhindern.

Die Deich­sel ist aus zwei 3 mm dicken PVC-Plat­ten gefräst, die oben an der Öse und zwi­schen den bei­den Rol­len durch ein­ge­kleb­te 12 mm dicke Abstands­hal­ter auf das benö­tig­te Maß gebracht wer­den. Im Foto nicht zu sehen sind die bei­den Unter­leg­schei­ben aus 2 mm PVC auf bei­den Sei­ten jeder Rol­le. Rol­len und Unter­leg­schei­ben sind damit 11 mm dick (2x2mm Unter­leg­schei­ben + 2x2mm Rol­le außen + 1x3mm Rol­le innen) und pas­sen gut zwi­schen die 12-mm-Deich­sel. Als Nabe dient eine 18 mm lan­ge Hül­se, die aus einem 6 mm dicken Mes­sing­rohr abge­schnit­ten wur­de. Jeweils eine 22 mm lan­ge M4-Schrau­be mit Stopp­mut­ter fixiert die Rol­len an der Deich­sel. Die Naben haben einen Abstand von 150 mm, so daß die Dräh­te letzt­lich 250 mm Abstand von­ein­an­der haben.

Abschlie­ßend noch ein paar Fotos der fer­tig instal­lier­ten Antenne:

Aufhängung des Faltdipols am Dach in südöstlicher Richtung
Auf­hän­gung des Falt­di­pols am Dach in süd­öst­li­cher Richtung

Aufhängung des Faltdipols an der nordwestlichen Seite
Auf­hän­gung des Falt­di­pols an der nord­west­li­chen Seite

Mittige Einspeisung über eine Mantelwellensperre. Oben der Spanner für Zäune.
Mit­ti­ge Ein­spei­sung über eine Man­tel­wel­len­sper­re. Oben der Span­ner für Zäune.

Die Dop­pel­rol­len machen einen hin­rei­chend sta­bi­len Ein­druck, um meh­re­re Jah­re im Außen­be­reich dem Wet­ter und der UV-Strah­lung zu trot­zen. Der Span­ner wur­de soweit ange­zo­gen, daß die bis­he­ri­ge Abspan­nung des Anten­nen­ma­stes abge­baut wer­den konn­te und damit durch die­sen Falt­di­pol ersetzt wird. Mal schau­en, wie sich das beim näch­sten Sturm ent­wickelt. Damit bei ruck­ar­ti­ger Bela­stung nichts reißt, wer­de ich noch eine Spann­fe­der neben den Seil­span­ner einbauen.