Yoo­CNC Con­trol­ler mit ESTLCAM

Seit etwa zehn Jah­ren betrei­be ich eine klei­ne chi­ne­si­sche CNC-Frä­se mit Yoo­CNC Con­trol­ler. Schritt­ver­lu­ste beglei­ten mich dabei von Anfang an. Ich konn­te sie auf ein erträg­li­ches Maß redu­zie­ren, indem ich ein paar im CNC-Forum emp­foh­le­ne Modi­fi­ka­tio­nen durch­ge­führt habe. Inzwi­schen betrei­be ich die Frä­se nicht mehr mit Mach3, son­dern bin auf den ESTLCAM CNC-Con­trol­ler umge­stie­gen, die ESTLCAM CAM-Soft­ware benut­ze ich schon von Anfang an.

Zum Testen der Frä­se habe ich ein klei­nes CAM-File geschrie­ben, das ein­fach nur fünf­zig­mal alle Ach­sen nach­ein­an­der von ihrer Mini­mal­po­si­ti­on zur Maxi­mal­po­si­ti­on und zurück fährt. Das nut­ze ich übri­gens auch nach dem gele­gent­li­chen Ölen der Spin­deln und Füh­rungs­schie­nen zum Ver­tei­len und „Ein­mas­sie­ren“ des Öls. Vor und nach dem Test­lauf füh­re ich eine Refe­renz­fahrt aus und ESTLCAM zeigt nach der zwei­ten Refe­renz­fahrt die Schritt­ver­lu­ste in Schrit­ten und in Mil­li­me­ter an. Schritt­ver­lu­ste im ein­stel­li­gen Bereich sind dabei zu ver­nach­läs­si­gen, denn deren Ursa­che ist wohl die Unge­nau­ig­keit der End­schal­ter. Ver­lu­ste um Mil­li­me­ter­bruch­tei­le oder gar um meh­re­re Mil­li­me­ter sind nicht hinnehmbar.

Bei die­sem Test­lauf pas­siert es immer wie­der, daß der Y‑Schrittmotor unter lau­tem Rat­tern nahe­zu ste­hen bleibt. Er dreht sich zwar noch sehr lang­sam, aber nicht mehr mit der ange­leg­ten Schritt­fre­quenz. Er hat offen­sicht­lich aus irgend­ei­nem Grun­de abge­bremst oder ganz gestoppt und kann nun nicht mehr ohne Beschleu­ni­gung mit der Takt­fre­quenz mit­hal­ten. Da ich den Schritt­mo­tor im Leer­lauf von Hand durch­dre­hen kann, ohne daß irgend­wo ein erhöh­ter Wider­stand zu bemer­ken wäre, habe ich die Steue­rung in Ver­dacht. Dem wider­spricht aller­dings, daß der Feh­ler auf der­sel­ben Ach­se auf­tritt, wenn ich die Aus­gän­ge wech­se­le. Wahr­schein­lich hat das Pro­blem meh­re­re Ursachen.

Beim Frä­sen der Klam­mern für mei­nen neu­en Anten­nen­mast habe ich mich aber nun der­art geär­gert, daß ich mich ent­schlos­sen habe, einen neu­en Con­trol­ler mit pro­fes­sio­nel­len End­stu­fen auf­zu­bau­en. Das soll dann auch der Ein­stieg für eine neue Frä­se sein. Das wer­de ich dem­nächst in einem sepa­ra­ten Arti­kel beschreiben.

Der Ärger und die Pla­nung für den neu­en Con­trol­ler hat dazu geführt, daß ich mir den alten Yoo­CNC-NT65-3X-Con­trol­ler noch­mal genau­er ange­schaut habe. Mit Logik­ana­ly­sa­tor und Oszil­lo­skop bewaff­net, habe ich mir die Signa­le direkt an den Steu­er­pins des TB6560AHQ ange­schaut und auch den Feh­ler­fall beob­ach­tet. Ergeb­nis: alle Schritt­im­pul­se kom­men kor­rekt auf den Signal­pins an. Auch im Feh­ler­fall fehlt kein ein­zi­ger Impuls und auch die Impuls­län­ge ist immer kor­rekt. Die Schritt­ver­lu­ste pas­sie­ren also am Aus­gang der Trei­ber oder eben doch in der Mecha­nik des Step­pers oder der Spindel.

Wie im oben ver­link­ten Forum emp­foh­len, habe ich die 24V Span­nungs­ver­sor­gung noch­mal geglät­tet, indem ich in der Y‑Endstufe den 1000µF Elko ersetzt habe und zwei neue 1µF und 0,1µF Kera­mik­kon­den­sa­to­ren par­al­lel geschal­tet habe. Außer­dem habe ich die ESTLCAM Ein­stel­lun­gen ange­passt. Der TB6560AHQ ver­langt in der Stan­dard­kon­fi­gu­ra­ti­on eine mini­ma­le Impuls­brei­te von 30µs. Außer­dem soll der CLK-Ein­gang für die Schritt­im­pul­se im Ruhe­zu­stand auf high lie­gen, denn nach einer Mil­li­se­kun­de schal­tet die Yoo­CNC-Steue­rung dann die Strom­stär­ke auf 20% her­un­ter, womit die Lei­stungs­auf­nah­me auf 4% sinkt. Die Schritt­mo­to­ren erwär­men sich dadurch deut­lich weniger.

Nach allen genann­ten Maß­nah­men ist die Feh­ler­häu­fig­keit nun erheb­lich gesun­ken, lei­der nicht ganz auf null. Da der Feh­ler nur auf der Y‑Achse auf­tritt, habe ich den maxi­ma­len Vor­schub für die­se Ach­se nied­ri­ger ein­ge­stellt. Die fol­gen­den ESTLCAM Ein­stel­lun­gen funk­tio­nie­ren nun mit dem Yoo­CNC Con­trol­ler im wesent­li­chen fehlerfrei:

X-, Y- und Z-Achse:
Schritte je Umdrehung: 1600 Achtelschritte (1,8° pro Puls, 200 Vollschritte, je 8 Mikroschritte)
Weg je Umdrehung: 4 mm (die Spindeln haben 4 mm Steigung)
Maximalvorschub X: 2200mm/min
Maximalvorschub Y: 1500mm/min
Maximalvorschub Z: 2200mm/min
Trägheit: 85% (default, nicht geändert)

Richtung umkehren: X:nein, Y und Z: ja

Für alle Achsen:
Beschleunigungsweg: 4 mm
Startvorschub: 60 mm/min
Schrittimpulslänge: 32µs (min: 30µs)
Schrittpause: 1
Schrittsignal invertieren: nein (wird durch eingebauten 74HC14 invertiert)

Der Aus­druck „im wesent­li­chen“ soll andeu­ten, daß es alle Jubel­jah­re lei­der doch noch einen Feh­ler gibt, immer auf der Y‑Achse. Das ist aber so sel­ten, daß ich damit arbei­ten kann. Die höhe­re Vor­schub­ge­schwin­dig­keit auf den X- und Z‑Achsen ver­ur­sacht kei­ne Pro­ble­me. Ob die Pro­ble­me auf der Y‑Achse tat­säch­lich von der Vor­schub­ge­schwin­dig­keit abhän­gen, ist nicht gesichert.

Die hier ein­ge­stell­te maxi­ma­le Vor­schub­ge­schwin­dig­keit wird von ESTLCAM beim Ver­fah­ren der Frä­se im Leer­lauf ver­wen­det. Beim Frä­sen gel­ten die beim Erstel­len des CAM-Files ange­ge­be­nen Wer­te, die natür­lich die hier ein­ge­stell­ten Maxi­mal­wer­te nicht über­schrei­ten dürfen.

Draht­an­ten­ne für alle Kurz­wel­len-Ama­teur­funk­bän­der (Teil 1)

Bevor die Tage deut­lich kür­zer wer­den und das Wet­ter wie­der unan­ge­nehm kühl wird, will ich mei­ne pro­vi­so­ri­sche end­ge­spei­ste Draht­an­ten­ne durch eine sta­bi­le­re Kon­struk­ti­on erset­zen. Wie hier schon ange­deu­tet, soll der Strah­ler län­ger wer­den und ein defi­nier­tes Gegen­ge­wicht anstatt des jet­zi­gen am Bal­kon­ge­län­der geer­de­ten Pig­tails ange­schlos­sen wer­den. Die­ser erste Teil beschreibt die Pla­nung und die Simu­la­ti­on der Anten­ne. Im zwei­ten Teil soll der tat­säch­li­che Auf­bau und die Mes­sung mit einem VNWA beschrie­ben wer­den. Die dann tat­säch­lich imple­men­tier­ten Dimen­sio­nen wer­den in eine ange­pass­te 4nec2-Simu­la­ti­on ein­flie­ßen, aus der dann die elek­tri­schen und magne­ti­schen Feld­da­ten für den Watt­wäch­ter (ein kosten­frei­es Pro­gramm der Bun­des­netz­agen­tur zur Bewer­tung von Ama­teur­funk­stel­len) extra­hiert wer­den. Damit wird die Anten­ne dann bei der Bun­des­netz­agen­tur, dem dafür zustän­di­gen Amt, angemeldet.

Vor­über­le­gun­gen

Eine ein­fa­che Draht­an­ten­ne, die auf allen gewünsch­ten Bän­dern reso­nant ist, gibt es nicht. Daher soll auch bei der neu­en Anten­ne wie­der ein Tuner für die Abstim­mung sor­gen. Mein selbst­ge­bau­ter Tuner funk­tio­niert zwar hin­rei­chend gut, aber ich woll­te auch immer schon mal einen kom­mer­zi­el­len Tuner aus­pro­bie­ren. Daher habe ich den zu mei­nem IC-7300 pas­sen­den AH-730 von ICOM besorgt. Er soll fast jeden Draht ab 7 m Län­ge auf allen Kurz­wel­len­bän­dern inklu­si­ve 160 m und 6 m anpas­sen kön­nen. Viel­fa­che von λ/2 sol­len aber ver­mie­den wer­den, denn dann geht der Strah­lungs­wi­der­stand gegen unend­lich, was von kei­nem Tuner mehr mit ver­nünf­ti­gem Auf­wand ange­paßt wer­den kann. Die Span­nung müss­te dann zu hoch wer­den. Die Doku­men­ta­ti­on des AH-730 weist aus­drück­lich dar­auf hin, sol­che Län­gen zu vermeiden.

Die Pla­nung

Die Anten­ne soll vom Bal­kon aus gespeist wer­den, weil dort das Anten­nen­ka­bel vom Trans­cei­ver ankommt und dort auch der Anten­nen­um­schal­ter instal­liert ist. Die Aus­deh­nung des Grund­stücks lässt vom Bal­kon aus in Süd­rich­tung etwa 25 m Län­ge zu, in Nord­rich­tung etwa 8 m. Wegen der not­wen­di­gen Abspan­nung der Masten muß ich min­de­stens drei Meter Abstand zu der jewei­li­gen Grund­stücks­gren­ze hal­ten. Das ist nicht zuletzt auch für die Anmel­dung bei der Bun­des­netz­agen­tur not­wen­dig. Die Anten­ne soll mit mode­ra­ten 100 Watt betrie­ben wer­den. Kei­ne sehr hohe Lei­stung, aber eben deut­lich mehr als die nach BEMFV anmel­de­frei­en 10 W EIRP. Da hilft es immer, wenn der Abstand zum unkon­trol­lier­ten Bereich mög­lichst groß ist.

Im Moment habe ich als Pro­vi­so­ri­um einen 20 m lan­gen Draht instal­liert, der für 160 m und 80 m eigent­lich zu kurz ist. Um die Draht­län­ge zu erhö­hen, sol­len bei­de Schen­kel gefal­tet wer­den, so wie es bei dem 17‑m und 15-m-Falt­di­pol erfolg­reich aus­pro­biert wur­de. Wegen der geo­me­tri­schen Umstän­de wer­den die bei­den Schen­kel ungleich lang. Die Län­gen wur­den so gewählt, daß sie auf kei­nem der Kurz­wel­len­bän­der ein Viel­fa­ches von λ/2 lang sind. Hier ist ein ein­fa­ches Libre­Of­fice Spreadsheet, mit dem die „guten“ und „schlech­ten“ Draht­län­gen berech­net wer­den können:

Die fol­gen­de, nicht maß­stabs­ge­treue Skiz­ze zeigt die Dimen­sio­nie­rung der geplan­ten Antenne:

Dimensionierung der gefalteten Langdrahtantenne
Dimen­sio­nie­rung der gefal­te­ten Langdrahtantenne

Der süd­li­che Draht ist nun ins­ge­samt 32,20 m lang, der nörd­li­che 10,60 m. Bei­de Län­gen lie­gen in einem „guten“ Bereich, sie sind kein Viel­fa­ches von λ/2 auf einem der Ama­teur­funk­bän­der. Der tat­säch­li­che Auf­bau wird zei­gen, ob alles paßt. Zunächst aber mal zur Simulation.

Simu­la­ti­on mit 4nec2

Hier ist die Ein­ga­be­da­tei für die 4nec2-Simulation:

Breit­band­si­mu­la­ti­on

Die Breit­band­si­mu­la­ti­on von 1 MHz bis 30 MHz zeigt aus­ge­präg­te Reso­nan­zen am unte­ren Ende des 80-m-Ban­des und unter­halb des 40-m-Ban­des. Wei­te­re Reso­nan­zen bei höhe­ren Fre­quen­zen sind wei­ter von 50 Ω ent­fernt und wei­sen daher ein schlech­te­res Steh­wel­len­ver­hält­nis auf.

Simulationsergebnis der Langdrahtantenne, SWR zwischen 1 und 30 MHz
Simu­la­ti­ons­er­geb­nis der Lang­draht­an­ten­ne, SWR zwi­schen 1 und 30 MHz
Simulationsergebnis der Langdrahtantenne, Impedanz zwischen 1 und 30 MHz
Simu­la­ti­ons­er­geb­nis der Lang­draht­an­ten­ne, Impe­danz zwi­schen 1 und 30 MHz

Die Simu­la­ti­on von 3 MHz bis 8 MHz zeigt die Reso­nan­zen etwas genauer.

Simulationsergebnis der Langdrahtantenne, SWR zwischen 3 und 8 MHz
Simu­la­ti­ons­er­geb­nis der Lang­draht­an­ten­ne, SWR zwi­schen 3 und 8 MHz
Simulationsergebnis der Langdrahtantenne, Impedanz zwischen 3 und 8 MHz
Simu­la­ti­ons­er­geb­nis der Lang­draht­an­ten­ne, Impe­danz zwi­schen 3 und 8 MHz

Durch Kür­zen des süd­li­chen Anten­nen­drah­tes um etwa 2 m las­sen sich die­se Reso­nan­zen leicht in das 80-m- und 40-m-Band schie­ben, so daß dort das Steh­wel­len­ver­hält­nis auf unter 2 sinkt. Auf die­sen bei­den Bän­dern wäre die Anten­ne dann ohne Tuner betreib­bar. Das führt aber dazu, daß der Wirk­wider­stand im 20-m‑, 10-m- und 6‑m-Band auf über 1 kΩ steigt. Auch das Spreadsheet zeigt bei die­ser Draht­län­ge genau für die genann­ten Bän­der „rot“. Die Anpas­sung dürf­te dann schwie­rig wer­den. In der jet­zi­gen Kon­fi­gu­ra­ti­on sind nun aller­dings die 17-m- und 12-m-Bän­der grenz­wer­tig. Man kann wohl nicht alles haben, even­tu­ell muß ich den Draht spä­ter doch noch kürzen.

Schmal­band­si­mu­la­ti­on

Nach­fol­gend zur Doku­men­ta­ti­on die Schmal­band­si­mu­la­tio­nen für alle Ama­teur­funk­bän­der auf Kurzwelle:

Im 17-m-Band liegt der Wirk­wider­stand zwi­schen 1 und 2 kΩ, im 12-m-Band bei etwa 1 kΩ. Die Draht­län­ge von 32,20 m ist im 17-m-Band nahe bei 4×λ/2 und im 12-m-Band bei knapp 6×λ/2. Die Pra­xis muß zei­gen, ob das funk­tio­niert. Pro­ble­me wären nicht wei­ter ver­wun­der­lich. Man soll­te immer im Kopf behal­ten, daß 100 Watt Sen­de­lei­stung an einem 2 kΩ Wider­stand eine Span­nung von 450 V am Spei­se­punkt bedeu­ten (√(P×R)).

Das ande­re Extrem bil­det das 60-m-Band und das 160-m-Band ab. Auf die­sen Bän­dern liegt der Wirk­wider­stand bei 10 Ω bis 20 Ω. Bei­des soll­te gut mit einem Anten­nen­tu­ner abstimm­bar sein, daher erwar­te ich dort kei­ne Probleme.

Die Anten­nen­ma­sten

Als Anten­nen­ma­sten sol­len zwei 12-m-Glas­fa­ser­ma­sten zum Ein­satz kom­men. Einer davon steht bereits seit drei Jah­ren im Gar­ten und soll nun etwas ver­setzt und bes­ser abge­spannt wer­den. Der zwei­te ist ein Neu­kauf und besteht nur aus sie­ben Ele­men­ten. Wegen der Hang­la­ge wird der süd­li­che Mast mit sei­nen zwölf Ele­men­ten auf etwa 10 m über dem Boden aus­ge­zo­gen, der obe­re mit sie­ben Ele­men­ten auf 6 m. Ihre Spit­zen wer­den dann etwa die­sel­be Höhe haben und die Anten­nen­dräh­te sol­len hori­zon­tal verlaufen.

Der Her­stel­ler der Masten emp­fiehlt und ver­treibt sel­ber gewöhn­li­che Schlauch­schel­len aus Edel­stahl zum Fixie­ren der ein­zel­nen Roh­re. Sie wer­den mit Schrumpf­schlauch umman­telt und klem­men so die Roh­re gegen Ver­schie­ben fest. Das funk­tio­niert soweit, aber ich fin­de es sub­op­ti­mal und „geba­stelt“. Außer­dem brau­che ich Ele­men­te zum Abspan­nen des Mastes und zum Hal­ten der Rol­len, auf denen der Anten­nen­draht auf­ge­spannt wird. Das ist eine loh­nen­de Auf­ga­be für eine CNC-Fräse.

Daher habe ich die nach­fol­gend beschrie­be­nen Ele­men­te aus einer 20 mm dicken Hart-PVC-Plat­te her­aus­ge­fräst. Der Innen­durch­mes­ser ist für das jewei­li­ge Seg­ment ange­passt und zwar der­art, daß noch eine pas­send zurecht­ge­schnit­te­ne 2 mm dicke Gum­mi­un­ter­la­ge als Schutz dazwi­schen geklemmt wer­den kann. Die Klem­men wer­den mit einer 4‑mm-Schrau­be auf dem jewei­li­gen Seg­ment fest­ge­klemmt. Die Aus­frä­sun­gen sind not­wen­dig, damit die Klem­me hin­rei­chend bieg­bar wird.

Segmentklemme
Seg­ment­klem­me

Eine Seg­ment­klem­me dient zum Fest­klem­men eines Seg­ments des Anten­nen­masts. Sie ersetzt die Schlauchschelle.

Segmentklemme mit zwei Haltern für die Abspannung
Seg­ment­klem­me mit zwei Hal­tern für die Abspannung

Eine Seg­ment­klem­me mit Hal­tern klemmt einer­seits das Seg­ment fest und hat zusätz­lich noch im 120°-Winkel zwei Hal­ter für Abspannseile.

Segmentklemme mit Rollenhalter
Seg­ment­klem­me mit Rollenhalter

Eine Seg­ment­klem­me mit Rol­len­hal­ter hat zwei lan­ge Aus­le­ger, zwi­schen denen eine Rol­le befe­stigt wird.

Die seit­li­chen Boh­run­gen für die Klemm­schrau­be und die Hal­ter wer­den in einem zwei­ten Arbeits­schritt manu­ell seit­lich ausgeführt.

Rolle
Rol­le

Die bei­den Rol­len an jedem Mast bestehen aus einer inne­ren 3 mm dicken PVC-Schei­be mit 50 mm Durch­mes­ser und zwei äuße­ren Schei­ben mit 70 mm Durch­mes­ser. Sie sind ver­klebt und zusätz­lich ver­schraubt. Sie wer­den mit einem durch­ge­steck­ten 6‑mm-Mes­sing­rohr an dem oben gezeig­ten Rol­len­hal­ter befe­stigt. Die­ses Mes­sing­rohr hat einen Innen­durch­mes­ser von 4 mm und wird mit einer durch­ge­hen­den 4‑mm-Schrau­be mit Stopp­mut­ter gehal­ten. Das Mes­sing­rohr bil­det so ein Gleit­la­ger, auf dem sich die Rol­le frei dre­hen kann.

Die Rol­len sind im Abstand von 195 cm am Mast befe­stigt, so daß die Anten­nen­dräh­te den geplan­ten Abstand von 2 m von­ein­an­der haben.

Damit dürf­te die Pla­nung und die Vor­be­rei­tung hin­rei­chend beschrie­ben sein. In den näch­sten Tagen geht’s an den Auf­bau. Die Erfah­run­gen wer­de ich im zwei­ten Teil beschreiben.

Falt­di­pol für das 17-m-Band

Som­mer­zeit ist Anten­nen­bau­zeit. Jetzt müs­sen die Außen­ar­bei­ten statt­fin­den, damit man im Win­ter mög­lichst nicht aus dem Haus muß. Pro­gram­mier­ar­bei­ten und der war­me Löt­kol­ben müs­sen war­ten, bis die Tage wie­der kür­zer wer­den und die Tem­pe­ra­tu­ren fallen.

Mei­ne end­ge­spei­ste Draht­an­ten­ne war von Anfang an ein Pro­vi­so­ri­um, das eigent­lich nur als Pro­of-of-Con­cept gedacht war. Sol­che Pro­vi­so­ri­en hal­ten bekannt­lich lan­ge, aber wenn der Mast dann durch Wit­te­rungs­ein­flüs­se irgend­wann wind­schief wird, ist es Zeit für Ver­bes­se­run­gen. Von einem 20 m lan­gen Draht kann man­cher Stadt­be­woh­ner im Miets­haus nur träu­men, den­noch ist er für die unte­ren Kurz­wel­len­bän­der zu kurz. 40 m Gesamt­län­ge, wie sie für das 80-m-Band benö­tigt wer­den, wären bei mir gera­de so mach­bar, wür­den aller­dings den Zorn der Ehe­frau wecken, denn der freie Blick auf den Don­ners­berg wür­de doch arg verschandelt.

Es muß daher im Prin­zip bei den 20 m blei­ben, ein paar Meter mehr wären wohl ein mög­li­cher Kom­pro­miß. Daher pla­ne ich, einen Falt­di­pol zu bau­en, also einen Draht vom Bal­kon zum Mast, dann eine gewis­se Strecke am Mast abwärts und wie­der zurück zum Bal­kon. Damit die bis­he­ri­ge end­ge­spei­ste Anten­ne einem mit­tig gespei­sten Dipol mit nied­ri­ge­rem Strah­lungs­wi­der­stand etwas näher kommt, soll auf der ent­ge­gen­ge­setz­ten Sei­te ein ähn­lich gestal­te­ter Strah­ler auf­ge­baut wer­den, aller­dings reicht es dort mal gera­de für fünf bis acht Meter. Das ist aber immer noch bes­ser, als der jet­zi­ge Pig­tail von etwa 2m Länge.

Ein klei­ner Anfang

Um zu sehen, ob das Pro­jekt über­haupt prin­zi­pi­ell funk­tio­nie­ren kann, soll ein ähn­li­cher Falt­di­pol mit klei­ne­ren Abmes­sun­gen gebaut wer­den. Die fol­gen­de Zeich­nung zeigt den prin­zi­pi­el­len Aufbau.

Der Dipol soll also sym­me­trisch sein und mit­tig gespeist wer­den. Die Gesamt­län­ge jedes Arms teilt sich in die Strecken Lu/2, Lv und Lo auf. Bei der Auf­tei­lung der Strecken gibt es in mei­nem Fall eini­ge Rand­be­din­gun­gen einzuhalten:

  • Die Län­gen Lu/2 + Lv + Lo defi­nie­ren, wie zu erwar­ten, die Resonanzfrequenz.
  • Da der Dipol kom­plett auf den Bal­kon pas­sen soll, darf die Län­ge Lu nicht grö­ßer als etwa 4,60 m sein.
  • Damit die gan­ze Kon­struk­ti­on hand­lich und sta­bil bleibt, soll Lv etwa 25 cm lang sein.
  • Durch Simu­la­tio­nen mit 4nec2 fin­det man empi­risch, daß das Ver­hält­nis Lo/Lu den Real­teil des Fuß­punkt­wi­der­stan­des defi­niert. Qua­li­ta­tiv: je klei­ner Lo/Lu wird, desto grö­ßer wird der reel­le Fuß­punkt­wi­der­stand. Bei prak­ti­ka­blen Län­gen vari­iert er zwi­schen etwa 35 und 60 Ω.

Der bei der bis­he­ri­gen Draht­an­ten­ne ver­wen­de­te Stahl­draht (eigent­lich ein Wei­de­zaun­draht) ist zwar preis­gün­stig, aber für Anten­nen natür­lich sub­op­ti­mal. Er ist rela­tiv dünn und sein ohm­scher Wider­stand ist zu hoch, um eine effi­zi­en­te Anten­ne zu bau­en. Daher habe ich nun ein paar Euro mehr inve­stiert und ins­ge­samt 100 m hoch­wer­ti­ge Anten­nen­lit­ze besorgt. Sie besteht aus ver­zinn­ten Kup­fer­adern und hat zur bes­se­ren Län­gen­sta­bi­li­tät einen Kev­lar Kern. Hier die tech­ni­schen Daten:

1 x 0,4 mm Kevlar Kern
24 x 0,25 mm verzinntes Kupfer
Kupferabschnitt: 1,2 mm2
Gewicht: 14 Gramm pro Meter
UV-beständige schwarze PE-Isolierung
Gesamtdurchmesser +/-2,5 mm
Zugkraft ca. 50kg

Expe­ri­men­tell wur­de ein Ver­kür­zungs­fak­tor von 0,89 bestimmt. Der ist lei­der nicht in der Spe­zi­fi­ka­ti­on zu fin­den. Mit die­sen Daten kann man nun ver­nünf­ti­ge 4nec2-Simu­la­tio­nen durchführen.

Wegen der oben genann­ten Rand­be­din­gun­gen bie­tet sich eine Kon­struk­ti­on für das 17-m-Band oder das 15-m-Band an. Zunächst war der tat­säch­li­che Ver­kür­zungs­fak­tor unbe­kannt und so wur­de der Dipol mit der bau­lich maxi­mal mög­li­chen Dimen­sio­nie­rung auf­ge­baut: Lu=4,60 m, Lv=0,25 m und Lo=2 m. Das soll­te bei einem maxi­mal mög­li­chen Ver­kür­zungs­fak­tor von 1,0 für das 15-m-Band rei­chen. Tat­säch­lich war der Dipol auf etwa 16,4 MHz reso­nant, wor­aus sich dann der genann­te Ver­kür­zungs­fak­tor von etwa 0,89 errech­ne­te. Durch Kür­zen der Lo-Schen­kel auf 1,59 m wur­de dann eine Reso­nanz knapp unter­halb des 17-m-Ban­des bei etwa 17,9 MHz erreicht. Das wäre durch wei­te­res Kür­zen leicht zu ver­bes­sern, aber letzt­lich ist das Ziel doch das 15-m-Band. Abge­zwackt ist schnell, daher hier zunächst mal die Gegen­über­stel­lung der Simu­la­ti­on mit der tat­säch­li­chen Messung:

17-m-Faltdipol, SWR (simuliert mit 4nec2)
17-m-Falt­di­pol, SWR (simu­liert mit 4nec2)

Der Dipol ist bei knapp 18 MHz reso­nant und das Steh­wel­len­ver­hält­nis liegt bei etwa 1,3.

17-m-Faltdipol, Smithdiagramm (simuliert mit 4nec2)
17-m-Falt­di­pol, Smit­h­dia­gramm (simu­liert mit 4nec2)

Das Smith-Dia­gramm zeigt bei Reso­nanz eine reel­le Impe­danz von etwa 38 Ω. Der schwar­ze Kreis zeigt die Punk­te mit einem Steh­wel­len­ver­hält­nis von 3. Alle Impe­dan­zen inner­halb die­ses Krei­ses kön­nen vom ein­ge­bau­ten Anten­nen­tu­ner des IC7300 ange­passt werden.

17-m-Faltdipol, Fernfeld (simuliert mit 4nec2)
17-m-Falt­di­pol, Fern­feld (simu­liert mit 4nec2)

Das Richt­dia­gramm zeigt die zu erwar­ten­de Cha­rak­te­ri­stik. Bei der Auf­hän­gung im kon­kre­ten Fall in Rich­tung Süd­ost-Nord­west dürf­te also eine bevor­zug­te Strah­lungs­rich­tung nach Süd­ame­ri­ka und Russland/Japan zu erwar­ten sein. Austra­li­en und Nord­ame­ri­ka dürf­ten eher schwie­rig werden.

17-m-Faltdipol, gemessen mit DG8SAQ VNWA
17-m-Falt­di­pol, gemes­sen mit DG8SAQ VNWA

Die tat­säch­li­che Mes­sung mit dem DG8SAQ Netz­werk­ana­ly­sa­tor liegt erstaun­lich nahe an der Simu­la­ti­on. Das liegt einer­seits natür­lich an dem Ver­kür­zungs­fak­tor, der aus der Mes­sung im Ver­gleich zur Simu­la­ti­on so errech­net wur­de, daß die simu­lier­te Reso­nanz­fre­quenz mit der tat­säch­li­chen über­ein­stimmt. Dar­über­hin­aus liegt aber auch der gemes­se­ne reel­le Fuß­punkt­wi­der­stand bei genau den simu­lier­ten 38 Ω. Die blau­en Krei­se sind die SWR=2 und SWR=3 Gren­zen. Zwi­schen 17,22 MHz und 18,35 MHz liegt das SWR also unter 3.

Hier ist die 4nec2-Datei, falls jemand selbst die Simu­la­tio­nen nach­voll­zie­hen will.

Der mecha­ni­sche Aufbau

Damit die Kon­struk­ti­on sta­bil, zuver­läs­sig und wet­ter­fest wird, habe ich zwei Dop­pel­rol­len aus Hart-PVC gefräst, die den Anten­nen­draht hal­ten und führen.

Gefräste Doppelrolle als Antennenhalter
Gefrä­ste Dop­pel­rol­le als Antennenhalter

Die Rol­len bestehen aus drei ver­kleb­ten und ver­schraub­ten Tei­len. Der inne­re Teil wur­de aus 3 mm dicken PVC Plat­ten gefräst, die bei­den äuße­ren wei­ßen Schei­ben sind 2 mm dick. Der Radi­us der inne­ren Schei­be bestimmt den Bie­ge­ra­di­us der Anten­nen­lit­ze. Dafür ist zwar kein Mini­mum spe­zi­fi­ziert, aber die gewähl­ten 50 mm (also 100 mm Durch­mes­ser) schei­nen hin­rei­chend groß zu sein. Die äuße­ren Schei­ben haben einen Durch­mes­ser von 120 mm, so daß rund­um 10 mm Platz sind, um den Anten­nen­draht auf der Rol­le zu hal­ten. Wenn man, wie in die­sem Fall auf dem Bal­kon, an alle Rol­len gut her­an­kommt, um einen Draht wie­der ein­zu­fä­deln, ist das völ­lig aus­rei­chend. Wenn der Draht erst ein­mal gespannt ist, bleibt er auch auf der Rol­le. Für die geplan­te Kon­struk­ti­on der län­ge­ren Anten­ne muß eine Lasche von oben das Her­aus­fal­len des Anten­nen­drah­tes verhindern.

Die Deich­sel ist aus zwei 3 mm dicken PVC-Plat­ten gefräst, die oben an der Öse und zwi­schen den bei­den Rol­len durch ein­ge­kleb­te 12 mm dicke Abstands­hal­ter auf das benö­tig­te Maß gebracht wer­den. Im Foto nicht zu sehen sind die bei­den Unter­leg­schei­ben aus 2 mm PVC auf bei­den Sei­ten jeder Rol­le. Rol­len und Unter­leg­schei­ben sind damit 11 mm dick (2x2mm Unter­leg­schei­ben + 2x2mm Rol­le außen + 1x3mm Rol­le innen) und pas­sen gut zwi­schen die 12-mm-Deich­sel. Als Nabe dient eine 18 mm lan­ge Hül­se, die aus einem 6 mm dicken Mes­sing­rohr abge­schnit­ten wur­de. Jeweils eine 22 mm lan­ge M4-Schrau­be mit Stopp­mut­ter fixiert die Rol­len an der Deich­sel. Die Naben haben einen Abstand von 150 mm, so daß die Dräh­te letzt­lich 250 mm Abstand von­ein­an­der haben.

Abschlie­ßend noch ein paar Fotos der fer­tig instal­lier­ten Antenne:

Aufhängung des Faltdipols am Dach in südöstlicher Richtung
Auf­hän­gung des Falt­di­pols am Dach in süd­öst­li­cher Richtung

Aufhängung des Faltdipols an der nordwestlichen Seite
Auf­hän­gung des Falt­di­pols an der nord­west­li­chen Seite

Mittige Einspeisung über eine Mantelwellensperre. Oben der Spanner für Zäune.
Mit­ti­ge Ein­spei­sung über eine Man­tel­wel­len­sper­re. Oben der Span­ner für Zäune.

Die Dop­pel­rol­len machen einen hin­rei­chend sta­bi­len Ein­druck, um meh­re­re Jah­re im Außen­be­reich dem Wet­ter und der UV-Strah­lung zu trot­zen. Der Span­ner wur­de soweit ange­zo­gen, daß die bis­he­ri­ge Abspan­nung des Anten­nen­ma­stes abge­baut wer­den konn­te und damit durch die­sen Falt­di­pol ersetzt wird. Mal schau­en, wie sich das beim näch­sten Sturm ent­wickelt. Damit bei ruck­ar­ti­ger Bela­stung nichts reißt, wer­de ich noch eine Spann­fe­der neben den Seil­span­ner einbauen.

Draht­an­ten­ne für Kurzwelle

Nach­dem ich nun seit ein paar Mona­ten über einen IC-7300 als Kurz­wel­len­trans­cei­ver ver­fü­ge, soll­te end­lich eine für meh­re­re Bän­der brauch­ba­re Kurz­wel­len­an­ten­ne her. Ein paar Mona­te konn­te ich mit auf dem obe­ren Bal­kon pro­vi­so­risch auf­ge­häng­ten Dräh­ten auf jeweils einem Band arbei­ten, die bei einem Band­wech­sel dann manu­ell gegen einen ande­ren Draht getauscht wer­den muss­ten. Das war unbe­quem und sub­op­ti­mal. Inzwi­schen habe ich auch auch ein Edel­stahl­ge­län­der auf dem Bal­kon mon­tiert, was die HF-Eigen­schaf­ten der Dräh­te deut­lich ver­schlech­tert hat. Das Gelän­der ist geer­det und schirmt HF ab.

Die bau­li­chen Gege­ben­hei­ten las­sen es pro­blem­los zu, einen 20 m lan­gen Anten­nen­draht zu span­nen. Dabei kann ein Ende gut an dem neu­en Edel­stahl­ge­län­der mon­tiert wer­den, wäh­rend das ande­re Ende auf einem Fiber­glas­mast befe­stigt wird. Aus mecha­ni­schen Grün­den soll­te die Anten­ne end­ge­speist sein, denn dann muß die Kon­struk­ti­on nicht auch noch den Anpaß­topf und das Koax­ka­bel tra­gen. Ein knapp 20 m lan­ger Draht soll­te dann auf dem 40 m Band (1 * λ/2), dem 20 m Band (2 * λ/2), dem 15 m Band (3 * λ/2) und dem 10 m Band (4 * λ/2) reso­nant sein.

Angeb­lich sol­len end­ge­spei­ste Anten­nen ohne elek­tri­sches Gegen­ge­wicht aus­kom­men, d.h. der Außen­lei­ter des Koax­ka­bels hängt sozu­sa­gen in der Luft. Das kann so nicht wirk­lich funk­tio­nie­ren, denn ein elek­tri­sches Poten­ti­al braucht immer etwas, woge­gen es gemes­sen wird. Das ist, wenn sonst nichts da ist, der Außen­lei­ter, also die Abschir­mung des Koax­ka­bels. Daß das gan­ze nicht so dra­ma­tisch ist, wie bei einem Vier­tel­wel­len­di­pol, liegt ein­fach dar­an, daß auf­grund der hohen Impe­danz eines end­ge­spei­sten Halb­wel­len­di­pols die Strom­stär­ke deut­lich gerin­ger ist. Ein Vier­tel­wel­len­di­pol hat eine Impe­danz von etwa 50 Ω, ein Halb­wel­len­di­pol aber zwi­schen 1 kΩ und 3 kΩ. Das bedeu­tet, daß bei glei­cher Lei­stung in einen end­ge­spei­sten Halb­wel­len­di­pol auch nur unge­fähr ein ach­tel bis ein vier­tel des Stro­mes fließt. Um sicher zu gehen, daß der Außen­lei­ter des Koax­ka­bels kein signi­fi­kan­tes Gegen­feld zum strah­len­den Draht auf­baut, schlie­ße ich ihn elek­trisch an das geer­de­te Bal­kon­ge­län­der an. Das soll­te gleich­zei­tig auch Man­tel­wel­len verhindern.

Aus­wahl des Antennendrahtes

Auf Emp­feh­lung von Mar­tin, DK7ZB, habe ich mich beim Wei­de­zaun-Lie­fe­ran­ten nach Anten­nen­draht umge­schaut. Mar­tin emp­fiehlt Stahl­draht-Lit­ze mit 1,6 mm Durch­mes­ser. Sie ist preis­gün­stig, reiß­fest und leicht. Ich habe mich aber dann für Alu­mi­ni­um­draht mit 2,0 mm Durch­mes­ser ent­schie­den. Der ist zwar etwas teu­rer und stör­ri­scher, aber sein elek­tri­scher Wider­stand bei 20 m beträgt nur 170 mΩ und sein Gewicht nur 170 g. Dage­gen hat die Stahl­lit­ze 1,5 Ω und sie wiegt knapp das dop­pel­te. In der Pra­xis mag bei­des aller­dings völ­lig irrele­vant sein. Alu­mi­ni­um­draht ist rela­tiv weich und läßt sich leicht bie­gen. Von der Rol­le abge­wickelt ist der Draht den­noch geneigt, sei­ne Bie­gung zu behal­ten. Er schnurrt also wie­der zusam­men. Dem kann man leicht ent­ge­gen­wir­ken, indem man ihn an einem Ende befe­stigt und dann mit einem Leder­hand­schuh oder einem Tuch an dem Draht ent­lang zieht, so daß er sich zwi­schen den Fin­gern leicht ver­biegt, aber von der Span­nung wie­der gera­de­ge­zo­gen wird. Wenn man das zwei- oder drei­mal gemacht hat, bleibt der Draht im wesent­li­chen gerade.

Abstim­mung des Drahtes

Nach dem pro­vi­so­ri­schen Auf­span­nen muß der Draht zunächst auf Reso­nanz gekürzt wer­den. Das geht heut­zu­ta­ge am prak­tisch­sten und zuver­läs­sig­sten mit einem vek­to­ri­el­len Netz­werk­ana­ly­sa­tor (VNA) und suk­zes­si­vem Kür­zen das Drah­tes mit einem Sei­ten­schnei­der. Das nach­fol­gen­de Bild zeigt das Smith Chart des mit dem DG8SAQ-VNWA gemes­se­nen und mit SimS­mith dar­ge­stell­ten Impe­danz­ver­lauf des letzt­lich 18,55 m lan­gen Aluminiumdrahtes:

Impedanz des nackten Antennendrahts (18,55 m lang)
Impe­danz des nack­ten Anten­nen­drahts (18,55 m lang)

Die Refle­xi­ons­mes­sung habe ich bei der Instal­la­ti­on nur auf dem 40m-Band bei 7.1 MHz durch­ge­führt. Wie man oben sieht, ist die Impe­danz schon leicht im induk­ti­ven Bereich. Ich habe ein paar Zen­ti­me­ter zuviel abge­schnit­ten. Für die höhe­ren Fre­quen­zen wäre es gün­sti­ger gewe­sen, noch ein paar wei­te­re Zen­ti­me­ter dazu­zu­ge­ben. Dann wäre die Impe­danz bei 40m und 20m zwar leicht in den kapa­zi­ti­ven Bereich ver­scho­ben, dafür wäre der Blind­an­teil bei 15m und 10m nicht ganz so hoch gewor­den. Viel­leicht span­ne ich gele­gent­lich einen neu­en Anten­nen­draht auf, der etwas län­ger ist.

Jetzt braucht man natür­lich noch eine Anpas­sung, damit die Impe­danz zumin­dest in die Nähe von 50 Ω kommt. Da der IC-7300, so wie die mei­sten moder­nen Trans­cei­ver, einen ein­ge­bau­ten Anten­ntu­ner hat, muß der Ziel­wert nicht son­der­lich genau getrof­fen wer­den. Der Tuner gleicht Steh­wel­len­ver­hält­nis­se bis 3,0 aus. Das bedeu­tet, daß die Impe­danz der Anten­ne inner­halb des gestri­chel­ten Krei­ses zu lie­gen kom­men muß. Zu beach­ten ist, daß es sich um die Impe­danz an der Anten­ne han­delt und daß das Anten­nen­ka­bel eine wei­te­re Trans­for­ma­ti­on bewirkt. Des­sen Trans­for­ma­ti­on ver­läuft aller­dings auch wie­der auf einem Kreis um den Mit­tel­punkt. Wenn man inner­halb des Krei­ses star­tet, endet man auch wie­der inner­halb des Krei­ses. Aller­dings muß man den Tuner neu abstim­men, wenn ein Kabel ande­rer Län­ge ange­schlos­sen wird.

Für eine breit­ban­di­ge Trans­for­ma­ti­on, hier also von 7 bis 30 MHz, kommt nur ein HF-Trans­for­ma­tor in Fra­ge. Alle ande­ren Trans­for­ma­tio­nen mit Spu­le, Kon­den­sa­tor oder Lei­tun­gen funk­tio­nie­ren nur auf einer ein­zi­gen Fre­quenz. Trans­for­ma­to­ren im Kurz­wel­len­be­reich kön­nen ver­lust­arm mit Ring­ker­nen auf­ge­baut wer­den. Das wur­de häu­fig beschrie­ben, auch im oben schon erwähn­ten Bei­trag von DK7ZB.

Da ich zunächst nur die Impe­danz bei 7,1 MHz gemes­sen hat­te, die im Reso­nanz­fall bei etwa 2,4 kΩ lag, war die nicht unlo­gi­sche Schluß­fol­ge­rung, daß der Tra­fo ein Wick­lungs­ver­hält­nis von 7:1 haben müs­se, um auf 50 Ohm zu trans­for­mie­ren. Der erste Ver­such mit einem selbst­ge­wickel­ten Über­tra­ger mit 21 Win­dun­gen und einer Anzap­fung bei drei Win­dun­gen (als Spar­tra­fo) schlug fehl. Meß­wer­te habe ich lei­der nicht archi­viert, aber offen­sicht­lich machen sich Kopp­lungs­ver­lu­ste und Win­dungs­ka­pa­zi­tä­ten so stark bemerk­bar, daß die Ergeb­nis­se weit weg vom erwar­te­ten Wert lie­gen. Außer­dem ist das Anlö­ten einer Anzap­fung eine Fummelei. 

Im zwei­ten Ver­such habe ich mich mit einem Wick­lungs­ver­hält­nis von 4:1 begnügt, drei Win­dun­gen pri­mär und zwölf Win­dun­gen sekun­där. Damit kön­nen die 2,4 kΩ immer­hin auf 150 Ω her­un­ter­trans­for­miert wer­den, was gera­de noch einem Steh­wel­len­ver­hält­nis von 3 ent­spricht und vom Trans­cei­ver auf die nöti­gen 50 Ω ange­paßt wer­den kann. Das hat funk­tio­niert und zwar auch hin­rei­chend gut auf den höher­fre­quen­ten Bän­dern. Hier die Meß­wer­te mit dem 4:1 Trafo:

Impedanz des Antennedrahts mit Trafo
Impe­danz des Anten­ne­drahts mit 4:1 Trafo

Hier die dazu­ge­hö­ri­ge S11 Datei:

Wie man sieht, ist die Impe­danz in wei­ten Tei­len noch in den induk­ti­ven Bereich ver­scho­ben und außer­dem in den höher­fre­quen­ten Bän­dern noch außer­halb des zuläs­si­gen Steh­wel­len­ver­hält­nis­ses. Das lässt sich mit einem pas­sen­den Kon­den­sa­tor kom­pen­sie­ren. Ein 68 pF Kon­den­sa­tor par­al­lel zum Ein­gang bewirkt die nach­fol­gend gezeig­te Verschiebung:

Impedanz des Antennedrahts mit Trafo und 68pF Anpassung
Impe­danz des Anten­ne­drahts mit 4:1 Tra­fo und 68pF Anpassung

Und wie­der die dazu­ge­hö­ri­ge S11 Datei:

Mit die­ser Kom­pen­sa­ti­on lie­gen nun die mei­sten KW-Ama­teur­funk­bän­der inner­halb des magi­schen SWR=3 Krei­ses und kön­nen so vom ein­ge­bau­ten Anten­nen­tu­ner auf die nöti­gen 50 Ω ange­passt wer­den. Das 17-m-Band liegt knapp außer­halb, aber der Tuner des IC-7300 schafft das gera­de noch im Nor­mal­be­trieb. Das 30-m-Band liegt deut­lich außer­halb, kann aber noch im Not­be­trieb (IC-7300 Emer­gen­cy Mode) mit maxi­mal 50W Aus­gangs­lei­stung ver­wen­det wer­den. In die­sem Not­be­trieb kann der Anten­nen­tu­ner sogar auf den 80- und 160-m-Bän­dern noch eine brauch­ba­re Anpas­sung finden.

Hier ein paar Fotos des fer­ti­gen Aufbaus:

Der Antennenhalter
Der Anten­nen­hal­ter mit mon­tier­ter AP-Dose und Anpasstrafo

Der Anpass­tra­fo ist in eine Elek­tro­in­stal­la­ti­ons-Auf­putz­do­se mon­tiert. Nach unten ist eine SO239-Buch­se zum Anschluß des Anten­nen­ka­bels was­ser­dicht ein­ge­schraubt. Außer­dem ist nach rechts die Mas­se abge­führt und nach links die hoch­trans­for­mier­te HF.

Befestigung der Antenne am Balkongeländer
Befe­sti­gung der Anten­ne am Balkongeländer

Der Anpass­ein­heit ist über eine kur­ze Stahl­draht­lit­ze an einem Pfo­sten des Bal­kon­ge­län­ders auf­ge­hängt. Eine pas­sen­de Gelenk­bol­zen­schel­le wur­de mit einer län­ge­ren Schrau­be ver­se­hen, auf die eine Ring­schrau­be auf­ge­schraubt ist. Die Stahl­draht­lit­ze ist mit Draht­seil­klem­men ver­schraubt und soweit mög­lich wur­den auch pas­sen­de Kau­schen ein­ge­setzt. Alle Stahl­tei­le sind aus V2A oder V4A Edel­stahl. Das Bal­kon­ge­län­der ist geer­det und dient als Gegen­ge­wicht für die Antenne.

Die Unterseite der Antennenhalters
Die Unter­sei­te der Anten­nen­hal­ters ist aus PVC gefräst

Der Hal­ter für die Anten­ne und die Anpas­sung ist aus 8 mm Hart-PVC gefräst, auf des­sen Ober­sei­te eine kup­fer­ka­schier­te Epo­xy-Pla­ti­ne ver­schraubt ist.

Der 4:1 Übertrager
Der 4:1 Über­tra­ger in einer hof­fent­lich was­ser­dich­ten Aufputzdose

Die Epo­xy-Pla­ti­ne ist 2,4 mm dick und beid­sei­tig mit 175µ Kup­fer beschich­tet. Nicht benö­tig­tes Kup­fer wur­de weggefräst.

In die­sem Foto sieht man auch den bewickel­ten Ring­kern vom Typ Ami­don FT140-77. Da Ring­ker­ne ja nach ver­wen­de­tem Mate­ri­al einen nied­ri­gen ohm­schen Wider­stand haben, wur­de er hier mit Tef­lon­band umwickelt. Das gibt es für wenig Geld in der Was­ser­in­stal­la­ti­ons­ab­tei­lung im Bau­markt. Es sind pri­mär drei und sekun­där zwölf Win­dun­gen auf­ge­bracht. Unter­halb des Ring­kerns, hier nicht zu sehen, ist der 68-pF-Kon­den­sa­tor angelötet.

Obwohl die Anten­ne nun fest mon­tiert und seit eini­gen Mona­ten im Ein­satz ist, sehe ich sie nicht als Dau­er­lö­sung an. Das blan­ke Kup­fer wird schon in Kür­ze kor­ro­die­ren und die Draht­auf­hän­gung wird trotz der Kau­schen irgend­wann das PVC ver­schlei­ßen. Dann baue ich halt was neues…