Spu­len­wickeln und ‑mes­sen in der Praxis

Über das Wickeln von Spu­len ist bereits viel nütz­li­ches geschrie­ben wor­den. Eini­ge Links auf hilf­rei­che Arti­kel und Werk­zeu­ge habe ich bereits bei der Beschrei­bung des Anten­nen­tu­n­ers ange­ge­ben. Die­se Werk­zeu­ge wer­den auch hier wie­der verwendet.

Begriffs­be­stim­mung

Frei­tra­gen­de zylin­dri­sche Spu­len wer­den oft als Luft­spu­len bezeich­net. Zu recht wei­ßen man­che dar­auf hin, daß das falsch sei, denn die Spu­le ist nicht aus Luft gewickelt, son­dern aus einem Lei­ter, mei­stens aus Kup­fer. Daher wird auch ger­ne der Begriff Luft­kern­spu­le als Gegen­satz zur Fer­rit­kern­spu­le ver­wen­det. Das hal­te ich, auch wenn es tech­nisch und gram­ma­ti­ka­lisch kor­rekt ist, für unglück­lich, dann die Luft im Kern der Spu­le hat kei­nen meß­ba­ren Ein­fluß auf ihre elek­tri­schen Eigen­schaf­ten. Ein Vaku­um wäre im Rah­men unse­rer Ama­teur­meß­mit­tel völ­lig iden­tisch. Ich bevor­zu­ge und ver­wen­de daher den Begriff kern­lo­se Spu­le.

Mei­ne Quel­le für Kupferdraht

Die nach­fol­gend exem­pla­risch beschrie­be­nen kern­lo­sen Spu­len sind aus blan­kem Kup­fer­draht gewickelt, der aus 3 x 1,5 mm² Man­tel­lei­tung gewon­nen wur­de (knapp 1,4 mm Durch­mes­ser). Rest­stücke die­ser Man­tel­lei­tung fal­len bei der Haus­in­stal­la­ti­on an. Selbst wenn man sol­che Kabel nicht hat, ist es wohl preis­wer­ter einen 25‑, 50- oder 100-m-Ring im Bau­markt zu kau­fen, als Kup­fer­lack­draht im Elek­tronik­han­del. Oxi­da­ti­on der blan­ken Spu­le läßt sich z.B. mit Löt­lack vor­beu­gen. Soll der Draht etwas dün­ner oder dicker sein, kann man auch Instal­la­ti­ons­lei­tun­gen mit 1 mm², 2,5 mm² oder noch grö­ße­rem Quer­schnitt bekom­men. Wem es auf das letz­te Quänt­chen Güte ankommt, der wird frei­lich zu ver­sil­ber­tem Kup­fer­draht (CuAg) greifen.

Zum Abman­teln der Kabel gibt es prak­ti­sche preis­wer­te Werk­zeu­ge im Bau­markt, soweit man sie nicht sowie­so im Werk­zeug­kof­fer hat. Als Bei­spiel die­ses Exem­plar, das knapp 40 Jah­re alt ist und mut­maß­lich dut­zen­de Stun­den im Ein­satz war:

Abisolierer aus dem Baumarkt
Abiso­lie­rer aus dem Baumarkt

Das Abman­teln einer ein­zel­nen Ader auf meh­re­re Meter ist nicht ganz so tri­vi­al. Eine Abiso­lier­zan­ge ist nur für weni­ge Zen­ti­me­ter geeig­net. Ich habe mir daher ein klei­nes Werk­zeug aus 8 mm dickem PVC gefräst. Es hat ein Loch mit 3 mm Durch­mes­ser, durch den eine Ader mit Iso­lie­rung passt und in einer pas­send gefrä­sten Nut ist die Klin­ge eines Cut­ters mit Heiß­kle­ber ein­ge­klebt. Die­se Klin­ge ist so justiert, daß sie die Iso­lie­rung des Drah­tes hin­rei­chend weit ein­schnei­det, so daß sie nach dem Durch­zie­hen fast von sel­ber abfällt. Hier zwei Fotos davon:

Abisolierer für einzelne Adern mit eingeklebter Cutterklinge
Abiso­lie­rer für ein­zel­ne Adern mit ein­ge­kleb­ter Cutterklinge

Abisolierer für einzelne Adern (mit isolierter Ader)
Abiso­lie­rer für ein­zel­ne Adern (mit iso­lier­ter Ader)

Fer­rit­kern oder kern­lo­se Spulen?

Es gibt doch so schö­ne und preis­wer­te Eisen­pul­ver- und Ferritring­ker­ne, die mit viel weni­ger Win­dun­gen und klei­ne­rer Bau­art die­sel­be Induk­ti­vi­tät errei­chen, wie eine kern­lo­se Zylin­der­spu­le. Da man mit einem kür­ze­ren Draht aus­kommt, soll­te auch die Güte bes­ser sein. War­um soll man da eine kern­lo­se Spu­le verwenden?

Alle Spu­len­ker­ne haben die prin­zi­pi­ell nach­tei­li­ge Eigen­schaft, bei zu gro­ßer magne­ti­scher Feld­stär­ke in die Sät­ti­gung zu gera­ten. Bei kern­lo­sen Spu­len steigt die magne­ti­sche Fluß­dich­te B pro­por­tio­nal mit der magne­ti­schen Feld­stär­ke H, die wie­der­um von der Strom­stär­ke in der Spu­le bestimmt wird. Bei Spu­len mit Ker­nen ist das nicht mehr der Fall, in der Sät­ti­gung steigt die Fluß­dich­te nur noch gering an (Weich­ma­gne­ti­sche Werk­stof­fe). Die Induk­ti­vi­tät der Spu­le wird daher bei hohen Lei­stun­gen nicht­li­ne­ar. Die bei gerin­ger Lei­stung mit einem VNWA gemes­se­nen Daten sind also nicht ohne wei­te­res auf den Betrieb mit höhe­rer Lei­stung über­trag­bar. Außer­dem gibt es wegen der Hyste­re­se­kur­ve Umma­gne­ti­sie­rungs­ver­lu­ste, die die Güte der Kern­spu­le nega­tiv beeinflussen.

Daher müs­sen Kern­spu­len für die Betriebs­lei­stung hin­rei­chend dimen­sio­niert sein. Aus eige­ner Erfah­rung kön­nen Ker­ne schon bei 100 Watt Sen­de­lei­stung sehr heiß wer­den. Wenn sie dann die Curie-Tem­pe­ra­tur über­schrei­ten, ver­lie­ren sie völ­lig ihre magne­ti­schen Eigen­schaf­ten. Zudem sind man­che Ker­ne elek­trisch lei­tend, was ins­be­son­de­re bei hohen HF-Span­nun­gen eine hin­rei­chen­de Iso­lie­rung der Wick­lung erfordert.

Aus die­sen Grün­den bevor­zu­ge ich, wenn mög­lich, kern­lo­se Spu­len, zumin­dest wenn Lei­stung im Spiel ist oder eine mög­lichst hohe Güte benö­tigt wird.

Spu­len­mes­sung mit dem VNWA

Hat man nun nach einer der vor­lie­gen­den Anlei­tun­gen eine schö­ne Spu­le gewickelt, dann muß sie auch qua­li­fi­ziert nach­ge­mes­sen wer­den. Man will im wesent­li­chen wis­sen, ob sie die ange­streb­te Induk­ti­vi­tät und Güte hat und natür­lich auch, bei wel­cher Fre­quenz sie ihre Par­al­lel­re­so­nanz auf­weist. Nur unter­halb die­ser Selbst­re­so­nanz­fre­quenz (SRF) ist sie als Induk­ti­vi­tät zu gebrauchen.

Ein­la­gi­ge kern­lo­se Zylinderspule

Zum Ein­stieg zei­ge ich mal den Bau und die Mes­sung einer ein­la­gi­gen kern­lo­sen Zylin­der­spu­le aus 1,4 mm Kup­fer­draht mit 9 Win­dun­gen, 30,5 mm Durch­mes­ser und 3 mm Win­dungs­ab­stand, also 27 mm Gesamtlänge.

kernlose Zylinderspule mit 9 Windungen
kern­lo­se Zylin­der­spu­le mit 9 Windungen

Die Spu­le wur­de zunächst auf einem Wickel­kör­per von etwa 28 mm Durch­mes­ser, einem lee­ren Mul­ti­vit­amin-Brau­se­ta­blet­ten-Röhr­chen, gewickelt. Nach dem Wickeln dehnt sie sich wegen der ver­blei­ben­den Span­nung auf gut 30 mm auf und kann dann leicht in einen vor­be­rei­te­ten gefrä­sten Hal­ter aus unbe­schich­te­tem GFK-Mate­ri­al ein­ge­schraubt wer­den. Er zwingt die Spu­le auf einen Durch­mes­ser von 30,5 mm und einen Win­dungs­ab­stand von 1,5 mm. Die zwei­te Rei­he von Boh­run­gen ist zum Ein­schrau­ben einer äuße­ren, etwas grö­ße­ren, Spu­le vor­ge­se­hen. Damit sind also zwei- oder mehr­la­gi­ge kern­lo­se Spu­len mög­lich, die spä­ter noch unter­sucht werden.

Nach dem Spreadsheet von HB9DFZ soll­te die­se Spu­le eine Induk­ti­vi­tät von 1,729 µH und bei 5 MHz eine Güte von 306,8 haben. Zu beach­ten ist, daß das Spreadsheet kei­ne para­si­tä­ren Kapa­zi­tä­ten, also auch kei­ne Selbst­re­so­nanz­fre­quenz berück­sich­tigt. Daher wächst die errech­ne­te Güte gren­zen­los mit der Fre­quenz. Das Spreadsheet ist daher zur Abschät­zung der Güte nur deut­lich unter­halb der SRF zu gebrauchen.

Der Meß­auf­bau sieht fol­gen­der­ma­ßen aus:

Der Testaufbau mit einem VNWA
Der Test­auf­bau mit einem VNWA

Die Spu­le wird nur an den Meß­aus­gang des VNWA ange­schlos­sen, es wer­den also nur die s11-Para­me­ter gemes­sen. Letzt­lich funk­tio­niert die Mes­sung genau­so, wie die LTSpi­ce-Simu­la­ti­on im vor­he­ri­gen Bei­trag: es wird eine defi­nier­te Meß­span­nung auf die Spu­le gege­ben und der dar­aus resul­tie­ren­de Strom gemes­sen. Span­nung und Strom wer­den jeweils in Betrag und Pha­se gemes­sen. Dar­aus wer­den dann wie bei LTSpi­ce alle unten dar­ge­stell­ten Para­me­ter errechnet.

Messung einer kernlosen Zylinderspule mit dem DG8SAQ VNWA
Mes­sung einer kern­lo­sen Zylin­der­spu­le mit dem DG8SAQ VNWA

Zur Ver­gleich­bar­keit mit den Simu­la­tio­nen sind auch hier wie­der der Schein­wi­der­stand |Z|, die Induk­ti­vi­tät L und die Güte QL dar­ge­stellt. Zur Ver­deut­li­chung sind fünf Mar­ker an unter­schied­li­chen Fre­quen­zen eingefügt.

Bei nied­ri­gen Fre­quen­zen wird eine Induk­ti­vi­tät von 1,75 µH gemes­sen, was erstaun­lich genau der vor­her­ge­sag­ten Induk­ti­vi­tät von 1,73 µH entspricht.

Die Selbst­re­so­nanz­fre­quenz der Spu­le liegt bei 98,4 MHz, am rech­ten Rand des Dia­gramms. Aus der SRF und der Induk­ti­vi­tät von 1,75 µH kann man nach der Thom­son­schen Schwin­gungs­glei­chung auf eine para­si­tä­re Kapa­zi­tät von etwa 1,5 pF schließen.

Die Güte bei 5 MHz liegt bei gemes­se­nen 375, was den vor­her­ge­sag­ten 307 auch recht nahe kommt. Güte­mes­sun­gen sind aller­dings noto­risch unge­nau und wer­den wei­ter unten noch etwas detail­lier­ter diskutiert.

Ein­la­gi­ge kern­lo­se Zylin­der­spu­le höhe­rer Induktivität

Mit­un­ter braucht man für die unte­ren Kurz­wel­len­bän­der Spu­len höhe­rer Induk­ti­vi­tät. Ab dem obe­ren ein­stel­li­gen µH-Bereich kön­nen sol­che Spu­len mecha­ni­sche Dimen­sio­nen anneh­men, die in den übli­chen Gehäu­sen kaum mehr hand­hab­bar sind. Das ändert aber nichts an ihrer Mach­bar­keit. Als Bei­spiel soll jetzt eine Spu­le von etwa 12 µH unter­sucht werden.

Durch Aus­pro­bie­ren prak­ti­ka­bler Wer­te erhält man mit dem Spreadsheet von HB9DFZ für eine Spu­le mit 80 mm Durch­mes­ser und einer Län­ge von 33,6 mm bei 12 Win­dun­gen eine Induk­ti­vi­tät von knapp 13 µH. Bei 10 MHz wird eine Güte von 930 prognostiziert.

Die Stei­gung von 2,8 mm wur­de übri­gens nach der Dau­men­re­gel aus­ge­wählt, wonach der Win­dungs­ab­stand für opti­ma­le Güte genau­so groß sein soll, wie der Draht­durch­mes­ser, näm­lich bei dem ver­wen­de­ten Draht jeweils 1,4 mm.

Wegen des gro­ßen Durch­mes­sers der Spu­le sind wei­te­re Abstands­hal­ter vor­ge­se­hen, die den kor­rek­ten Abstand der ein­zel­nen Win­dun­gen sicherstellen.

Einlagige kernlose Zylinderspule, 12 Windungen, 80 mm Durchmesser
Ein­la­gi­ge kern­lo­se Zylin­der­spu­le, 12 Win­dun­gen, 80 mm Durchmesser

Die nach­fol­gen­de Gra­fik zeigt die Meßergebnisse:

Meßergebnisse der einlagigen kernlosen Zylinderspule
Meß­er­geb­nis­se der ein­la­gi­gen kern­lo­sen Zylinderspule

Man beach­te, daß die ver­ti­ka­le Ska­lie­rung der Induk­ti­vi­tät und der Güte gegen­über der vori­gen Mes­sung geän­dert wur­de. Die Induk­ti­vi­tät ist mit 14,2 µH etwas höher als berech­net. Bei der Güte soll­te man sich nicht auf die Mar­ker ver­las­sen, die zufäl­lig auf einem Aus­rei­ßer der Meß­wer­te ste­hen kön­nen. „Mit dem Auge gemit­telt“ dürf­te die 10 MHz-Güte bei etwa 400 lie­gen. Eine schmal­ban­di­ge­re Mes­sung von 8 bis 12 MHz ergibt eine Güte von unge­fähr 500, also etwa halb soviel, wie vor­her­ge­sagt. Die Selbst­re­so­nanz­fre­quenz liegt bei unge­fähr 20 MHz.

Da eine Spu­le von 80 mm Durch­mes­ser nur schlecht hand­hab­bar ist, soll nun eine zwei­la­gi­ge kern­lo­se Spu­le ähn­li­cher Induk­ti­vi­tät unter­sucht werden.

Zwei­la­gi­ge kern­lo­se Zylinderspule

Kern­lo­se Zylin­der­spu­len las­sen sich mit einem gefrä­sten Wickel­kör­per auch leicht als zwei- oder mehr­la­gi­ge Spu­len fer­ti­gen. Das soll­te die Induk­ti­vi­tät bei nied­ri­gem Bau­vo­lu­men deut­lich erhö­hen. Gleich­zei­tig wird man aber erwar­ten, daß die Selbst­re­so­nanz­fre­quenz sinkt, weil die para­si­tä­re Kapa­zi­tät grö­ßer wird, als bei einer ein­la­gi­gen Spule.

Der nach­fol­gend unter­such­te Pro­to­typ der zwei­la­gi­gen Zylin­der­spu­le besteht aus zwei zunächst unab­hän­gi­gen Spu­len. Sie sind ein­zeln gewickelt, wur­den nach­ein­an­der in den Spu­len­trä­ger ein­ge­dreht (am besten fängt man mit der inne­ren Spu­le an) und dann die Dräh­te am einen Ende anein­an­der­ge­lö­tet, am ande­ren Ende wur­de eine Meß­buch­se angelötet.

Zu Beach­ten ist, daß der Wickel­sinn bei­der Spu­len gleich sein muß. Da die eine Spu­le nach oben und die ande­re nach unten steigt, muß die eine links­her­um und die ande­re rechts­her­um gewickelt wer­den. Zur Wah­rung der Form­sta­bi­li­tät und des Abstan­des bei­der Spu­len sind hier noch klei­ne Abstands­hal­ter ein­ge­klemmt. Beim Frä­sen die­ser Hal­ter ist zu beach­ten, daß die Win­dun­gen der bei­den Spu­len nicht par­al­lel ver­lau­fen, son­dern sich wegen der ent­ge­gen­ge­setz­ten Wickel­rich­tung bei 90° und 270° schnei­den. Die Ein­ker­bun­gen auf bei­den Sei­ten soll­ten sich also gegen­über lie­gen. Anders als hier gezeigt rei­chen zwei die­ser Hal­ter auch völ­lig aus.

Die inne­re Spu­le hat einen Durch­mes­ser von 28 mm, die äuße­re von 36 mm. Sowohl auf der inne­ren wie auch auf der äuße­ren Spu­le sind 13,5 Win­dun­gen auf­ge­bracht, was ins­ge­samt 27 Win­dun­gen ergibt. Die Stei­gung beträgt jeweils 2,8 mm, was zu knapp 38 mm Spu­len­län­ge führt (2,8 mm ∗ 13,5 Windungen).

Zur über­schlä­gi­gen Bestim­mung der Induk­ti­vi­tät neh­me ich einen mitt­le­ren Durch­mes­ser von 32 mm und kom­me mit dem oben schon genann­ten Spreadsheet von HB9DFZ auf 12,88 µH und bei 10 MHz auf eine Güte von 213.

Meß­er­geb­nis­se der zwei­la­gi­gen Spule

Meßergebnisse der zweilagigen kernlosen Zylinderspule
Meß­er­geb­nis­se der zwei­la­gi­gen kern­lo­sen Zylinderspule

Die gemes­se­ne Induk­ti­vi­tät liegt bei etwa 11,4 µH, also etwas unter­halb, aber den­noch recht nahe bei den oben errech­ne­ten 12,88 µH. Die vor­her­ge­sag­te Güte bei 10 MHz von 213 wird mit etwa 400 (wie­der „mit dem Auge gemit­telt“) deut­lich über­bo­ten. Es fällt auf, daß die Güte auch bei Fre­quen­zen über 10 MHz, anders als bei der ein­la­gi­gen Spu­le, rela­tiv hoch bleibt. Eine etwas breit­ban­di­ge­re Mes­sung zeigt, daß die Selbst­re­so­nanz­fre­quenz bei etwa 19 MHz liegt.

Ein kur­zer Ver­gleich mit der ein­la­gi­gen Spu­le zeigt also, daß SRF und Güte nur wenig gesun­ken sind. Nicht ver­ges­sen darf man aller­dings, daß die Induk­ti­vi­tät der ein­la­gi­gen Spu­le doch etwa 25% höher ist. Ein fai­rer Ver­gleich wirk­lich glei­cher Induk­ti­vi­tä­ten, wird daher noch deut­li­cher zugun­sten der ein­la­gi­gen Spu­le aus­fal­len (aber „Wel­ten“ lie­gen nicht dazwischen).

Ver­gleichs­mes­sung einer Ringkernspule

Zum Ver­gleich mit den ein- und zwei­la­gi­gen kern­lo­sen Spu­len soll eine Ring­kern­spu­le ähn­li­cher Induk­ti­vi­tät unter­sucht wer­den. Weil vor­han­den, fällt die Wahl auf einen FT114-61 Ring­kern. Der mini-Ring­kern­rech­ner errech­net für 12 Win­dun­gen eine Induk­ti­vi­tät von 11,4 µH.

Ringkernspule. 12 Windungen auf FT114-61
Ring­kern­spu­le. 12 Win­dun­gen auf FT114-61

Meß­er­geb­nis­se der Ringkernspule

Meßergebnisse der Ringkernspule
Meß­er­geb­nis­se der Ringkernspule

Die Induk­ti­vi­tät liegt mit 10,9 µH auch hier leicht unter der pro­gno­sti­zier­ten von 11,4 µH. Die Selbst­re­so­nanz­fre­quenz ist hier nicht gezeigt, sie liegt bei knapp 30 MHz. Bei nied­ri­gen Fre­quen­zen von 1 und 2 MHz ist die Güte sehr hoch, sie sinkt aber schon bei 5 MHz unter die der kern­lo­sen Spu­le und sie wird schon bei 10 und 14 MHz kaum mehr als ein fünf­tel der zwei­la­gi­gen kern­lo­sen Spu­le. Auch wenn man Güte­mes­sun­gen immer etwas kri­tisch betrach­ten soll­te, ist der Trend eindeutig.

Zusam­men­fas­sung der Meßergebnisse

Es wur­den exem­pla­risch drei Spu­len mit unge­fähr glei­cher Induk­ti­vi­tät mit einem VNWA von DG8SAQ durch­ge­mes­sen. Das nach­fol­gen­de Foto zeigt einen Grö­ßen­ver­gleich der Spulen.

Größenvergleich der hier gemessenen Spulen
Grö­ßen­ver­gleich der hier gemes­se­nen Spulen

Die größ­te Spu­le is eine ein­la­gi­ge kern­lo­se Spu­le mit 80 mm Durch­mes­ser und 34 mm Höhe. Bei 10 MHz hat sie die beste Güte die­ser Spu­len und ihre Selbst­re­so­nanz­fre­quenz liegt bei 20 MHz. Die zwei­la­gi­ge kern­lo­se Spu­le steht ihr in den elek­tri­schen Eigen­schaf­ten kaum nach, hat aber weni­ger als den hal­ben Durch­mes­ser, belegt damit also weni­ger als ein vier­tel der Flä­che und ist nur 4 mm höher.

Die Grö­ße der Ring­kern­spu­le ist unschlag­bar. Ihr Durch­mes­ser ist dem der zwei­la­gi­gen Zylin­der­spu­le ähn­lich (33 mm vs. 36 mm), aber die Höhe beträgt mit 10 mm nur ein gutes vier­tel der Zylin­der­spu­le. Dafür ist die Zylin­der­spu­le wesent­lich höher belast­bar. Ihre Güte von etwa 400 bedeu­tet, daß sie ein vier­hun­dert­stel der beauf­schlag­ten Lei­stung in Wär­me umwan­delt, also 1 Watt bei 400 Watt Lei­stung. Da sie „luft­ge­kühlt“ ist, wür­de ich ihr ohne wei­te­res 2,5 W Ver­lust zumu­ten, sie also mit 1 kW betrei­ben. In der Ring­kern­spu­le wird bei einer Güte von 80 bereits bei 80 W Bela­stung ein Watt ver­bra­ten. Da sie wegen der kom­pak­ten Bau­wei­se viel schlech­ter gekühlt wird, ist die­se Bela­stung schon bedenklich.

Quint­essenz, wenn’s passt: kern­lo­se Spu­len verwenden!

Güte­mes­sun­gen an Spulen

Güte­mes­sun­gen sind noto­risch unge­nau und rausch­be­haf­tet. Das liegt dar­an, daß Güte­mes­sun­gen an die Meß­gren­zen sto­ßen. Der Blind­wi­der­stand liegt in der Grö­ßen­ord­nung hun­der­te Ohm bis weni­ge kΩ, wäh­rend der Wirk­wider­stand in der Grö­ßen­ord­nung eini­ger 100 mΩ bis weni­gen Ohm liegt. Außer­dem kann die Spu­le Stö­run­gen aus der Umge­bung ein­fan­gen. Die oben gezeig­te Meß­kur­ve ver­wen­det schon einen Trick, um die Kur­ve zu glät­ten: die Kur­ve der Güte wird über die jeweils benach­bar­ten 40 Meß­punk­te geglät­tet (smoot­hing). Die unge­glät­te­te Kur­ve sieht so aus:

Messung einer kernlosen Zylinderspule mit dem DG8SAQ VNWA
Mes­sung einer kern­lo­sen Zylin­der­spu­le mit dem DG8SAQ VNWA, ohne Smoot­hing der Güte

Und das ist noch harm­los, denn man kann schon optisch nur mit dem Auge die Güte abschät­zen. Das ist nicht immer so. Die bei­den ande­ren Kur­ven in die­sem Bei­spiel sind übri­gens nicht geglättet.

Die­sel­be Spu­le ist hier noch­mal etwas schmal­ban­di­ger gemes­sen und neben der Güte wird auch noch ihr Blind­wi­der­stand und ihr Wirk­wider­stand dargestellt.

Güte, Wirk- und Blindwiderstand einer Spule
Güte, Wirk- und Blind­wi­der­stand einer Spule

Güte und Wirk­wider­stand sind über jeweils 40 Meß­wer­te geglät­tet, der Blind­wi­der­stand ist nicht geglät­tet. Die Güte wird aus Q=X/R berech­net und man sieht and den Meß­wer­ten deut­lich, daß der Wirk­wider­stand R für das Rau­schen und die nicht-Mono­to­nie der Güte ver­ant­wort­lich ist. Die Güte folgt spie­gel­bild­lich dem Wirk­wider­stand, die Kur­ve des Blind­wi­der­stands ist im Rah­men der Meß­ge­nau­ig­keit rausch­frei und monoton.

Trotz Glät­tung ver­blei­ben Unre­gel­mä­ßig­kei­ten (nicht-Mono­to­ni­en) in den Meß­kur­ven, die nicht mehr auf Rau­schen zurück­zu­füh­ren sind. Man sieht hier z.B. eine Erhö­hung des Wirk­wider­stan­des und ent­spre­chen­de Ver­min­de­rung der Güte zwi­schen etwa 15 und 30 MHz. Sie blei­ben bei Wie­der­ho­lun­gen der Mes­sung im wesent­li­chen gleich. Die Ursa­che ist unbe­kannt und gele­gent­lich wer­de ich da noch­mal wei­ter forschen.

Man kann die Meß­kur­ve noch wei­ter glät­ten und auch eine Aus­gleichs­kur­ve oder einen Spli­ne dafür berech­nen. Das soll­te natür­lich mit gro­ßer Vor­sicht gemacht wer­den, weil es zwar die Kur­ven ver­schö­nert, aber die wah­ren Ursa­chen verdeckt.

Ver­bes­se­rung von Gütemessungen

Zur Ver­bes­se­rung der Güte­mes­sun­gen schlägt Kurt, OZ7OU, zwei unter­schied­li­che Maß­nah­men vor. Zum einen hilft es, die Spu­le von äuße­ren Stö­run­gen abzu­schir­men und sie z.B. in einen lee­ren Farb­ei­mer zu mon­tie­ren. Zum ande­ren kann man die Güte auch bei Seri­en­re­so­nanz mes­sen, wo die Impe­dan­zen ein Mini­mum errei­chen, bei dem sie mit guter Auf­lö­sung meß­bar sind. Eine Seri­en­re­so­nanz erreicht man durch Ein­schlei­fen eines pas­sen­den Kon­den­sa­tors hoher Güte.

Die Güte Q eines Schwing­krei­ses im Reso­nanz­fall errech­net sich aus der Güte QC des Kon­den­sa­tors und der Güte QL der Spu­le nach fol­gen­der Formel:


Schwing­kreis­gü­te:

     QL * QC 
Q = ────────
     QL + QC

Wenn man einen Kon­den­sa­tor aus­wählt, des­sen Güte weit­aus höher als die der Spu­le ist, dann nähert sich die gemes­se­ne Güte Q der Güte der Spu­le QL an. Zumin­dest erhält man eine gute unte­re Abschät­zung: auch bei einem Kon­den­sa­tor gerin­ger Güte, ist die tat­säch­li­che Güte der Spu­le also immer noch bes­ser, als die damit gemes­se­ne Güte.

Der klei­ne Nach­teil die­ser Metho­de ist, daß man mit einem festen Kon­den­sa­tor immer nur die Güte bei einer ein­zi­gen Fre­quenz mes­sen kann. Kurt schlägt daher vor, einen Dreh­kon­den­sa­tor zu ver­wen­den, um die Güte leicht bei meh­re­ren unter­schied­li­chen Fre­quen­zen zu messen.

Da hier kei­ne hohen Anfor­de­run­gen an die Prä­zi­si­on der Güte­mes­sung gestellt wer­den sol­len, gebe ich mich für die hier gezeig­ten Spu­len mit der gemes­se­nen (und geglät­te­ten) Güte des VNWA zufrie­den. Sie lie­gen, wie ein­gangs gezeigt, nicht um Grö­ßen­ord­nun­gen dane­ben und soll­ten zumin­dest für ver­glei­chen­de Mes­sun­gen hin­rei­chend genau sein.

Wei­te­re geplan­te Ver­su­che: Sonderbauformen

Bei Gele­gen­heit wer­de ich noch eini­ge leicht zu fer­ti­gen­de Son­der­bau­for­men kern­lo­ser Spu­len untersuchen.

n‑eckige kern­lo­se Spulen

Spu­len müs­sen nicht zylin­der­för­mig sein, son­dern sie kön­nen auch einen n‑eckigen Quer­schnitt haben. Mit n gegen unend­lich wird dar­aus dann wie­der eine Zylin­der­spu­le. Da die Induk­ti­vi­tät bei sonst glei­chen Eigen­schaf­ten line­ar mit dem Quer­schnitt A wächst, hat eine qua­dra­tisch gewickel­te Spu­le gegen­über einer gleich­gro­ßen Zylin­der­spu­le eine knapp 30% höhe­re Induk­ti­vi­tät (Zylin­der­spu­le: AZ=π/4∗d²; Qua­drat­spu­le: AQ=d²; AQ/AZ=4/π=1,27). Die Län­ge L des Wickel­drah­tes steigt um den­sel­ben Pro­zent­satz (LZ=π∗d vs. LQ=4∗d; LQ/LZ=4/π=1,27), wodurch die Güte in erster Nähe­rung für glei­che Induk­ti­vi­tä­ten gleich­blei­ben soll­te. Kern­lo­se Spu­len mit qua­dra­ti­schem oder recht­ecki­gem Quer­schnitt könn­ten eine kom­pak­te­re Bau­wei­se der damit aus­ge­stat­te­ten Gerä­te erge­ben, weil sie den bei einer Zylin­der­spu­le unge­nutz­ten Raum mit­be­nut­zen. Das kann aber auch zu einem Null­sum­men­spiel wer­den, wenn grö­ße­re Abstän­de ein­ge­hal­ten wer­den müs­sen, um Kopp­lun­gen zu benach­bar­ten Bau­ele­men­ten zu verringern.

Ver­setz­te Wick­lun­gen n‑eckiger Spulen

Bei n‑eckigen Spu­len kann man auf einem geeig­ne­ten Wickel­kör­per ein­zel­ne Win­dun­gen gegen­ein­an­der ver­dre­hen. Das Prin­zip wird bei Kreuzwickel­spu­len schon lan­ge ange­wen­det. Das soll­te zu einer Ver­rin­ge­rung der para­si­tä­ren Kapa­zi­tät und einer ent­spre­chen­den Erhö­hung der Selbst­re­so­nanz­fre­quenz führen.

Koni­sche Spulen

Seit eini­ger Zeit wer­den für den UHF-Fre­quenz­be­reich koni­sche Spu­len ange­bo­ten, die zwar zylin­drisch sind, deren Durch­mes­ser sich aber über die Län­ge ändert. Das soll die Güte der Spu­le erhö­hen. Mal sehen, ob da was (meß­ba­res) dran ist.