Spek­trum­ana­ly­sa­tor, Teil 3

Nach­dem ich nun eini­ge Mona­te mit mei­nem neu­en Spek­trum­ana­ly­sa­tor her­um­ge­spielt habe, muß ich nun noch ein paar Ergän­zun­gen und Klar­stel­lun­gen zu den bei­den ersten Tei­len hier und hier hin­zu­fü­gen. In den ersten Mes­sun­gen habe ich z.T. ungün­sti­ge Meß­ein­stel­lun­gen gewählt und bei der Beur­tei­lung des dar­ge­stell­ten Sei­ten­band­rau­schen wahr­schein­lich zu stren­ge Kri­te­ri­en für ein Gerät die­ser Preis­klas­se angelegt.

Die Wahl der Meß­ein­stel­lun­gen ist kri­tisch, was nach­fol­gend am Bei­spiel eini­ger Mes­sun­gen an einem Clapp-Guri­ett Oszil­la­tor gezeigt wer­den soll. Er ist mit einem 18,432 MHz Quarz bestückt und schwingt auf der drit­ten Ober­wel­le bei nomi­nal 55,296 MHz. Alle Mes­sun­gen wur­den mit dem Sig­lent Spek­trum­ana­ly­sa­tor SSA3032X Plus durchgeführt.

Funk­ti­ons­wei­se des Spektrumanalysators

Zunächst muß man sich noch­mal über die Funk­ti­ons­wei­se eines Spek­trum­ana­ly­sa­tors klar wer­den. Es han­delt sich prin­zi­pi­ell um einen Über­la­ge­rungs­emp­fän­ger mit sehr breit­ban­di­gem, mög­lichst emp­find­li­chem, linea­rem und den­noch groß­si­gnal­fe­stem Ein­gang. Das sind Eigen­schaf­ten, die in Kom­bi­na­ti­on nicht leicht zu rea­li­sie­ren sind und Kom­pro­mis­se erfor­dern. Als Über­la­ge­rungs­emp­fän­ger benö­tigt der Spek­trum­ana­ly­sa­tor also einen VFO, der in einem Meß­zy­klus so gere­gelt wird, daß der Emp­fän­ger den gewähl­ten Emp­fangs­be­reich über­streicht. Das Meß­si­gnal am Ein­gang wird dann mit dem VFO-Signal gemischt, gefil­tert, gemes­sen und schließ­lich am Bild­schirm ange­zeigt. Neben dem Fre­quenz­be­reich kön­nen die Fil­ter­pa­ra­me­ter und der Meß­de­tek­tor ein­ge­stellt wer­den. Moder­ne Spek­trum­ana­ly­sa­to­ren wer­ten das ZF-Signal digi­tal mit einer FFT aus und errei­chen daher erheb­lich redu­zier­te Meß­zei­ten. Die prin­zi­pi­el­le Funk­ti­ons­wei­se unter­schei­det sich aber nicht von frü­he­ren rein ana­lo­gen Geräten.

Wahl der Band­brei­te und des Detektors

Es gibt zwei Band­brei­ten­ein­stel­lun­gen, die Reso­lu­ti­on Band­width (RBW) und die Video Band­width (VBW). Die wich­ti­ge­re davon ist die RBW, die die Durch­lass­band­brei­te des ZF-Fil­ters bestimmt. Die VBW mit­telt die detek­tier­ten Signa­le unmit­tel­bar vor der Dar­stel­lung, so daß das dar­ge­stell­te Rau­schen mini­miert wird. Das Video­fil­ter ist im auto­ma­ti­schen Modus an die Ein­stel­lung des ZF-Fil­ters gekop­pelt. In den hier gezeig­ten Mes­sun­gen wird die­ser auto­ma­ti­sche Modus ver­wen­det, VBW ist also immer gleich der RBW.

Der Spek­trum­ana­ly­sa­tor stellt die jeweils gemes­se­nen Signal­pe­gel auf sei­nem Bild­schirm auf der ver­ti­ka­len Ach­se über den auf der hori­zon­ta­len Ach­se ein­ge­stell­ten Fre­quenz­be­reich dar. Dabei ist die Anzahl der Punk­te in bei­den Rich­tun­gen begrenzt. Der SSA3032X Plus hat für die Fre­quenz­dar­stel­lung genau 751 Punk­te reser­viert. Der Rest des 1024 Pixel brei­ten Dis­plays wird zur Dar­stel­lung wei­te­rer Infor­ma­tio­nen benö­tigt. Damit reprä­sen­tiert also jeder ein­zel­ne Punkt einen Fre­quenz­be­reich der ein­ge­stell­ten Spann­brei­te divi­diert durch 751.

Pos Peak Messungen

Hier nun eine erste Bei­spiel­mes­sung des Clapp-Guri­ett Oszil­la­tors bei 55,28 MHz mit einer Spann­brei­te von 2,5 MHz und einer Auf­lö­sungs­band­brei­te von 30 kHz.

Clapp-Guriett Oszillator mit 18.432MHz Quarz, Span: 2.5MHz, RBW=VBW: 30kHz, Detector: PosPeak
Clapp-Guri­ett Oszil­la­tor mit 18.432MHz Quarz, Span: 2.5MHz, RBW=VBW: 30kHz, Detec­tor: PosPeak

Jeder dar­ge­stell­te Meß­wert ent­spricht hier also einem Inter­vall von 2,5 MHz / 751 = 3329 Hz (Span/Pixelanzahl). Der Detek­tor mißt den maxi­ma­len posi­ti­ven Pegel (Pos Peak) inner­halb die­ses Inter­valls und stellt ihn auf der y‑Achse log­arith­misch dar. Die ein­ge­stell­te Band­brei­te von 30 kHz ist deut­lich brei­ter, als das Inter­vall, so daß der Signal­pe­gel von ‑0,79 dBm zuver­läs­sig gemes­sen wird. Mar­ker 2 zeigt den Rausch­pe­gel im Abstand von 500 kHz zum Trä­ger. Rausch­pe­gel wer­den auto­ma­tisch mit der jeweils ein­ge­stell­ten Band­brei­te auf eine Band­brei­te von 1 Hz umge­rech­net. Hier wird ein Rausch­pe­gel von ‑112,14 dBm/Hz ermittelt.

Soll die Meß­kur­ve eine bes­se­re Auf­lö­sung bekom­men, z.B. weil man näher am Signal mes­sen will, dann muß die RBW ver­rin­gert wer­den. Wählt man eine RBW, die deut­lich klei­ner ist als die Brei­te des Inter­valls, dann ste­hen dem Spek­trum­ana­ly­sa­tor meh­re­re Meß­wer­te pro Inter­vall zur Ver­fü­gung, die aber letzt­lich nur durch einen Pixel auf dem Bild­schirm reprä­sen­tiert wer­den kön­nen. Da die Inter­vall­brei­te im vor­lie­gen­den Fall 3329 Hz beträgt, wäre eine RBW von 3 kHz ange­mes­sen. Damit wür­de mit einer Mes­sung prak­tisch das gesam­te dar­ge­stell­te Inter­vall erfasst. Zu Demo­zwecken soll die Band­brei­te aber jetzt auf 300 Hz ein­ge­stellt wer­den, wodurch also etwa elf Mes­sun­gen auf ein Inter­vall fal­len. Die Mes­sung lie­fert nun fol­gen­des Ergebnis:

Clapp-Guriett Oszillator mit 18.432MHz Quarz, Span: 2.5MHz, RBW=VBW: 300Hz, Detector: PosPeak
Clapp-Guri­ett Oszil­la­tor mit 18.432MHz Quarz, Span: 2.5MHz, RBW=VBW: 300Hz, Detec­tor: PosPeak

Der Pegel des Trä­gers ist mit ‑0,91 dBm gleich­ge­blie­ben (Unter­schie­de von ein oder zwei Zehn­tel dBm kann man getrost igno­rie­ren). Wegen der „Pos Peak“ Ein­stel­lung hat sich der Detek­tor von den elf im Inter­vall gemes­se­nen Wer­ten den Maxi­mal­wert aus­ge­sucht und die ande­ren zehn igno­riert. Die­ser Maxi­mal­wert unter­schei­det sich nicht von dem mit zehn­mal grö­ße­rer Band­brei­te gemes­se­nen Maxi­mal­wert aus der vori­gen Messung.

Aller­dings fällt auf, daß der Rausch­pe­gel mit ‑104,21 dBm/Hz nun um etwa 8 dBm gestie­gen ist. Wie kann das sein? Ganz ein­fach, aus den nun elf Meß­wer­ten pro Inter­vall sucht sich der Detek­tor wegen der „Pos Peak“ Ein­stel­lung nun wie­der den jeweils größ­ten aus, wäh­rend bei der vori­gen Mes­sung die­se elf Wer­te mit der einen ein­zi­gen Mes­sung grö­ße­rer Band­brei­te gemit­telt wur­den. Rau­schen ist ein sto­cha­sti­scher Pro­zess und der Pegel wird am besten durch sei­nen Mit­tel­wert reprä­sen­tiert, nicht durch den Maxi­mal­wert. Man kann hier also deut­lich erken­nen, daß eine Rausch­mes­sung mit „Pos Peak“ Ein­stel­lung bei einer Band­brei­te weit unter der Brei­te des Meß­in­ter­valls einen zu hohen Wert liefert.

Avera­ge Video Messungen

Wäh­rend die Mes­sung des Signal­pe­gels auch bei klei­ner RBW mit dem Pos Peak Detek­tor also ein plau­si­bles Ergeb­nis lie­fert, ist die Mes­sung eines Rausch­pe­gels also krass falsch. Daher wie­der­ho­len wir nun die Mes­sun­gen noch­mal mit einem ande­ren Detek­tor, näm­lich Avera­ge Video.

Clapp-Guriett Oszillator mit 18.432MHz Quarz, Span: 2.5MHz, RBW=VBW: 30kHz, Detector: Average Video
Clapp-Guri­ett Oszil­la­tor mit 18.432MHz Quarz, Span: 2.5MHz, RBW=VBW: 30kHz, Detec­tor: Avera­ge Video

Signal- und Rausch­pe­gel stim­men hier im Rah­men der Meß­ge­nau­ig­keit mit der Pos Peak Mes­sung bei glei­cher Auf­lö­sungs­band­brei­te über­ein. Das ist nicht ver­wun­der­lich, denn pro Inter­vall wird eine ein­zi­ge Mes­sung mit einer viel grö­ße­ren Band­brei­te durch­ge­führt. Ob man die­ses eine Ergeb­nis als Maxi­mal­wert oder als Durch­schnitts­wert bezeich­net, ist gleich.

Ein womög­lich uner­war­te­tes Ergeb­nis lie­fert die Mes­sung mit RBW = 300 Hz:

Clapp-Guriett Oszillator mit 18.432MHz Quarz, Span: 2.5MHz, RBW=VBW: 300Hz, Detector: Average Video
Clapp-Guri­ett Oszil­la­tor mit 18.432MHz Quarz, Span: 2.5MHz, RBW=VBW: 300Hz, Detec­tor: Avera­ge Video

Der dar­ge­stell­te Signal­pe­gel ist gera­de­zu abge­stürzt, um fast 60 dB. Das ist eine direk­te Fol­ge der Mit­te­lung über die elf Meß­wer­te. Nur einer die­ser Wer­te hat den tat­säch­li­chen Pegel von etwa ‑0.8 dBm wäh­rend die benach­bar­ten Wer­te zwi­schen ‑60 und ‑80 dBm lie­gen dürf­ten. Dar­aus errech­net der Spek­trum­ana­ly­sa­tor den kor­rek­ten Mit­tel­wert von ‑56,64 dBm, der aber mit dem tat­säch­li­chen Pegel nichts mehr zu tun hat. Die Rausch­mes­sung am Mar­ker 2 zeigt aber trotz der gerin­gen RBW wie­der den oben schon gemes­se­nen plau­si­blen Wert von ‑111 bis ‑112 dBm/Hz. Für Rausch­mes­sun­gen soll­te daher der „Avera­ge Video“ Detek­tor aus­ge­wählt werden.

Nor­mal, Sam­ple und Neg Peak Messungen

Der Voll­stän­dig­keit hal­ber sol­len hier noch die Mes­sun­gen mit ande­ren Detek­tor­ein­stel­lun­gen doku­men­tiert werden:

Der Detek­tor Sam­ple wählt genau einen Meß­wert in der Mit­te des jewei­li­gen Inter­valls aus. Da der Oszil­la­tor im Lau­fe der Mes­sun­gen aus der Mit­te des Dis­plays hin­aus­ge­wan­dert ist, wird hier der Signal­pe­gel bei 300 Hz RBW über­haupt nicht mehr ange­zeigt. Der Nor­mal Detek­tor zeigt abwech­selnd das Maxi­mum und das Mini­mum eines Inter­valls an. Damit lässt sich also schon optisch recht gut die Fluk­tua­ti­on der Meß­wer­te beur­tei­len. Neg Peak zeigt den jewei­li­gen Mini­mal­wert des Inter­valls an.

Emp­foh­le­ne Meßeinstellungen

Soll mit einer ein­zi­gen Mes­sung sowohl der Signal­pe­gel als auch der Rausch­pe­gel kor­rekt ange­zeigt wer­den, darf die ZF-Band­brei­te RBW nicht klei­ner sein, als das Meß­in­ter­vall. Signal- und Rausch­pe­gel wer­den dann weit­ge­hend unab­hän­gig von der Wahl des Detek­tors im Rah­men der Meß­ge­nau­ig­keit kor­rekt ange­zeigt. Beim Nor­mal Detek­tor ist aller­dings zu beach­ten, daß der Mar­ker mal auf dem Mini­mum, mal auf dem Maxi­mum ste­hen kann. Wenn RBW die Brei­te des Meß­in­ter­valls (deut­lich) unter­schrei­tet, dann muß der pas­sen­de Detek­tor aus­ge­wählt wer­den. Zum Mes­sen des Signal­pe­gels emp­fiehlt sich dann Pos Peak, zum Mes­sen des Rausch­pe­gels Avera­ge Video oder Sample.

Mes­sung des Seitenbandrauschens

Kann man denn nun mit einem Spek­trum­ana­ly­sa­tor das Sei­ten­band­rau­schen eines Oszil­la­tors direkt mes­sen oder ist das nicht mög­lich? Kann man wenig­stens eine qua­li­ta­ti­ve Aus­sa­ge tref­fen: schlecht, geht so bzw. gut. Das Sei­ten­band­rau­schen wird übli­cher­wei­se im Abstand von 10 kHz zum Trä­ger ange­ge­ben und auf den Pegel des Trä­gers bezo­gen. Nach dem Bei­trag „Pha­sen­rausch­mes­sun­gen mit dem Spek­trum­ana­ly­sa­tor“ von Wer­ner Schnor­ren­berg, DC4KU, hat ein guter Oszil­la­tor ein Sei­ten­band­rau­schen von ‑70 bis ‑110 dBc/Hz im Abstand von 10 kHz, sehr gute Oszil­la­to­ren auch klei­ner als ‑160 dBc/Hz. Dabei ist zu beach­ten, daß die­ser Bei­trag nun älter als 30 Jah­re ist und sich die Stan­dards inzwi­schen geän­dert haben dürf­ten. ‑100 dBc/Hz müss­te also heut­zu­ta­ge von einem guten Oszil­la­tor schon unter­schrit­ten werden.

Betrach­ten wir noch ein­mal die Mes­sung des oben schon ver­wen­de­ten Clapp-Guri­ett Oszil­la­tors, dies­mal mit RBW = 3 kHz und drei Rausch-Mar­kern im Abstand von 10 kHz, 100 kHz und 1 MHz.

Clapp-Guriett Oszillator mit 18.432MHz Quarz, Span: 2.5MHz, RBW=VBW: 3kHz, Detector: Average Video
Clapp-Guri­ett Oszil­la­tor mit 18.432MHz Quarz, Span: 2.5MHz, RBW=VBW: 3kHz, Detec­tor: Avera­ge Video

Woher kommt die­ser auf­fäl­li­ge Anstieg des Rau­schens in der Nähe des Trä­gers und der Abfall unmit­tel­bar dane­ben? Ist das das Sei­ten­band­rau­schen des gemes­se­nen Oszil­la­tors? Ganz klar nein, es ist das Sei­ten­band­rau­schen des VFOs im Spek­trum­ana­ly­sa­tor. Des­sen Rau­schen wird näm­lich mit dem Trä­ger des zu mes­sen­den Oszil­la­tors in den ZF-Band­paß gemischt. Die beid­sei­ti­gen Peaks wer­den (mut­maß­lich) von der PLL die­ses VFOs erzeugt. Die­ses Ver­hal­ten hat­te ich schon im ersten Teil doku­men­tiert, ohne mir genau über die Ursa­che bewußt zu sein.

Der Pegel des Trä­gers wird hier mit ‑1,8 dBm gemes­sen. Er ist wegen der RBW von 3 kHz bereits leicht redu­ziert. Gehen wir von einem tat­säch­li­chen Pegel von ‑0,8 dBm aus, wie oben gemes­sen, dann zeigt die­se Mes­sung Sei­ten­band­rausch­pe­gel von ‑99,7 dBc/Hz (@10 kHz), ‑95,46 dBc/Hz (@100 kHz) und ‑116,08 dBc/Hz (@1 MHz). Das Daten­blatt des SSA3032X Plus spe­zi­fi­ziert garan­tier­te (typi­sche) Wer­te von 95 (98) dBc/Hz (@10 kHz), 96 (97) dBc/Hz (@100 kHz) und 115 (117) dBc/Hz (@1 MHz). Die tat­säch­li­chen Wer­te sind frei­lich nicht bekannt, aber man kann anneh­men, daß sie nicht deut­lich bes­ser sind, denn sonst hät­te der Her­stel­ler die bes­se­ren Wer­te spe­zi­fi­ziert. Eher sind die spe­zi­fi­zier­ten Wer­te geschönt.

Nach den Standards von 1990, die DC4KU im oben erwähnten Beitrag dokumentiert, erreichen gute Spektrumanalysatoren ein Seitenbandrauschen von besser als -80 dBc/Hz im Abstand von 10 kHz, sehr gute Geräte besser als -110 dBc/Hz. Preist man den technischen Fortschritt der letzten 30 Jahre ein, ist der SSA3032X Plus mit seinen -95 dBc/Hz nach heutigen Standards wohl als "gut" einzuordnen, aber eher nicht als "sehr gut".

Die gemes­se­nen Wer­te lie­gen nahe an den spe­zi­fi­zier­ten typi­schen Wer­ten. Damit kann man den wesent­li­chen Teil des hier gemes­se­nen Sei­ten­band­rau­schens dem VFO des Spek­trum­ana­ly­sa­tors zuord­nen. Abwei­chun­gen von 1 dB wür­de ich als Meß­un­ge­nau­ig­keit defi­nie­ren. Das Sei­ten­band­rau­schen des gemes­se­nen Oszil­la­tors ist also sicher nied­ri­ger, als die hier gemes­se­nen Wer­te, wie nied­rig genau, weiß man nicht. Die oben genann­te Anfor­de­rung von höch­stens ‑100 dBc/Hz im 10 kHz Abstand für einen guten Oszil­la­tor ist also erfüllt. Damit ist man aber an der Meß­gren­ze des Spek­trum­ana­ly­sa­tors ange­kom­men. Für genaue­re Mes­sun­gen benö­tigt man ande­re Meßverfahren.

Die Pro­ble­ma­tik bei die­ser direk­ten Mes­sung ist der Dyna­mik­be­reich des Signals. Ein Spek­trum­ana­ly­sa­tor benö­tigt einen groß­si­gnal­fe­sten Ein­gang mit sehr nied­ri­gem Eigen­rau­schen. Er muß in dem gezeig­ten Fall ein ‑100 dBm/Hz Rausch­si­gnal von einem unmit­tel­bar benach­bar­ten 0 dBm Signal (1 mW) unter­schei­den kön­nen. Das sind zehn Grö­ßen­ord­nun­gen, also ein Fak­tor von zehn Milliarden.

Hier noch­mal die Links zu Teil 1 und Teil 2.

Ein neu­er Spek­trum­ana­ly­sa­tor muß her!

Vor­über­le­gun­gen

Die Histo­rie

Vor knapp zehn Jah­ren habe ich mir mei­nen ersten Spek­trum­ana­ly­sa­tor (SA) gekauft, einen DSA815-TG der Fir­ma Rigol. Es ist ein für Ama­teur­zwecke recht brauch­ba­res Gerät, das damals knapp 1500 Euro geko­stet hat und heu­te immer noch für gut 1000 Euro ver­füg­bar ist. Er hat aller­dings sei­ne Schwä­chen. Die klein­ste Auf­lö­sungs­band­brei­te (RBW) war sei­ner­zeit 100 Hz, konn­te durch einen Soft­ware­up­date aber auf 10 Hz redu­ziert wer­den. Das ist gar­nicht so schlecht, damit kann man arbei­ten. Als stö­rend erweist sich aber das rela­tiv hohe Pha­sen­rau­schen ins­be­son­de­re beim Mes­sen von Oszil­la­to­ren. Das Daten­blatt gibt für einen Abstand von 10 kHz einen Wert <-80dBc/Hz an. Es wird schlech­ter, je näher man an den Trä­ger kommt. Das ist, wenn über­haupt, nicht viel bes­ser als das Pha­sen­rau­schen eines selbst­ge­bau­ten Oszil­la­tors. Den kann man daher nicht qua­li­fi­ziert mes­sen, denn man kann das Pha­sen­rau­schen des Oszil­la­tors nicht von dem des SA unterscheiden.

Ein wei­te­rer klei­ner Nach­teil ist die Maxi­mal­fre­quenz von 1,5 GHz. Das ist natür­lich für alle Kurz­wel­len­bän­der inklu­si­ve 2 m und 70 cm völ­lig aus­rei­chend. Auf den ersten Blick reicht es auch für 23 cm, aber es kann ein Nach­teil sein, daß man da nicht ein­mal die zwei­te Ober­wel­le geschwei­ge denn die oft wich­ti­ge­re drit­te Ober­wel­le beob­ach­ten kann. Der Track­ing­ge­ne­ra­tor ist ein hilf­rei­ches Werk­zeug, um s21-Para­me­ter und mit einem exter­nen Richt­kopp­ler auch s11-Para­me­ter zu mes­sen, wenn auch bei­de nur ska­lar und nicht vek­to­ri­ell. Will man bei­spiels­wei­se ein Band­pass­fil­ter für das 23 cm Band mes­sen, dann ist es sehr hilf­reich, deut­lich über die Band­gren­zen hin­aus­zu­ge­hen und nicht gleich am Band­ende schon blind zu sein.

Der heu­ti­ge Stand der Technik

Kurz und gut, ich brau­che einen neu­en Spek­trum­ana­ly­sa­tor! Für Ama­teur­zwecke und Ama­teur­bud­gets kom­men nur Gerä­te chi­ne­si­scher Pro­ve­ni­enz in Fra­ge, dar­un­ter beson­ders die von Rigol und Sig­lent. Bei bei­den Her­stel­lern kann man aus einem brei­ten Preis- und Lei­stungs­spek­trum aus­wäh­len. Die erste Fra­ge, die jeder für sich sel­ber klä­ren muß, ist die, ob ein vek­to­ri­el­ler Netz­werk­ana­ly­sa­tor (VNA) ein­ge­baut sein soll. Einen Track­ing­ge­ne­ra­tor haben die mei­sten Gerä­te sowie­so ein­ge­baut und auch frei­ge­schal­tet. Da ist es zum VNA nicht mehr weit, aber ob der Auf­preis gerecht­fer­tigt ist, muß jeder sel­ber entscheiden.

Da ich bereits einen bis 1,3 GHz gut funk­tio­nie­ren­den VNA (von DG8SAQ) habe und mich die tech­ni­schen Daten der SA mit VNA nicht wirk­lich über­zeugt haben, habe ich mich auch wegen des Auf­prei­ses von etwa 600 Euro gegen den eige­bau­ten VNA ent­schie­den. Für etwa 660 Euro gibt es den LibreV­NA, der immer­hin bis 6 GHz nutz­bar ist. Letzt­lich habe ich mich daher für den Sig­lent SSA3032X Plus ohne ein­ge­bau­ten VNA ent­schie­den, der gera­de so in das ver­füg­ba­re Bud­get gepasst und mei­ne Anfor­de­run­gen erfüllt hat.

Daves Vor­ar­beit

EEV­blog-Dave hat in einem sei­ner sehens­wer­ten und unnach­ahm­li­chen Vide­os den Sig­lent SSA3021X mit dem Rigol DSA815 (Video #891) ver­gli­chen und in einem wei­te­ren Video (#892) auch den SSA3021X auf­ge­schraubt. Der Sig­lent SSA3021X ist funk­tio­nal weit­ge­hend iden­tisch mit dem SSA3032X Plus. Er ist aller­dings auf 2.1 GHz limi­tiert, hat kein Web­in­ter­face und kei­nen Touchscreen.

Ver­gleichs­mes­sun­gen des SSA3032X Plus gegen­über dem DSA815-TG

In die­sem Bei­trag wer­de ich eini­ge Ver­gleichs­mes­sun­gen der bei­den genann­ten Gerä­te durch­füh­ren und die jewei­li­gen Meß­er­geb­nis­se per Screen­shot dar­stel­len. Als Meß­ob­jek­te wur­de der Ama­teur­funk­trans­cei­ver IC-7300 und ver­schie­de­ne Test­schal­tun­gen ver­wen­det, die sich noch in der Bastel­ki­ste fan­den. Letz­te­re erhe­ben kei­ner­lei Anspruch auf tech­ni­sche Mei­ster­lei­stun­gen. Ganz im Gegen­teil, es sind zum Teil gefrä­ste Pro­to­ty­pen mit unter­durch­schnitt­li­cher Per­for­mance. Gera­de des­halb eig­nen sie sich aber gut, um als Ver­gleichs­ob­jek­te zu dienen.

Damit die­ser Arti­kel nicht über­la­den wird, ver­schie­be ich die ursprüng­lich geplan­ten Refle­xi­ons- und Trans­mis­si­ons­mes­sun­gen mit dem jeweils ein­ge­bau­ten Track­ing­ge­ne­ra­tor auf einen zwei­ten Teil. Hier wer­den also nur Spek­tren gemessen.

Rausch­pe­gel bei offe­nem Eingang

Genau wie Dave in sei­nem Video, schlie­ße ich erst mal gar­nichts an. Hier ist also das dar­ge­stell­te Rau­schen bei offe­nem Ein­gang, jeweils für RBW=VBW=1MHz (gelb), 100 kHz (rot) und 10 kHz (blau).

DS815-TG, Quelle: keine, Center: 750 MHz, Span: 1500 MHz, RBW=VBW: 1000/100/10 kHz, Attn: 0dB, PA ausgeschaltet
DS815-TG, Quel­le: kei­ne, Cen­ter: 750 MHz, Span: 1500 MHz, RBW=VBW: 1000÷100÷10 kHz, Attn: 0dB, PA ausgeschaltet
SSA3032X-Plus, Quelle: keine, Center: 750 MHz, Span: 1500 MHz, RBW=VBW: 1000/100/10 kHz, Attn: 0dB, PA ausgeschaltet
SSA3032X-Plus, Quel­le: kei­ne, Cen­ter: 750 MHz, Span: 1500 MHz, RBW=VBW: 1000÷100÷10 kHz, Attn: 0dB, PA ausgeschaltet

Dave spricht beim Rigol von ‑65 dBm, ‑75 dBm und ‑85 dBm und beim Sig­lent von ‑85 dBm, ‑90 dBm und ‑100 dBm (@ RBW=1 MHz, 100 kHz und 10 kHz), zumin­dest am Anfang des jewei­li­gen Fre­quenz­be­rei­ches. Das kann ich für den Rigol bestä­ti­gen, aber nicht ganz für den Sig­lent. Da mes­se ich jeweils etwa 2 bis 5 dB schlech­te­re Wer­te. Wie auch Dave schon fest­stellt, ist der Fre­quenz­gang beim Sig­lent glat­ter als beim Rigol.

Die näch­sten bei­den Screen­shots zei­gen die­sel­ben Mes­sun­gen mit ein­ge­schal­te­tem Vor­ver­stär­ker (pre­am­pli­fier, PA).

DS815-TG, Quelle: keine, Center: 750 MHz, Span: 1500 MHz, RBW=VBW: 1000/100/10 kHz, Attn: 0dB, PA eingeschaltet
DS815-TG, Quel­le: kei­ne, Cen­ter: 750 MHz, Span: 1500 MHz, RBW=VBW: 1000÷100÷10 kHz, Attn: 0dB, PA eingeschaltet
SSA3032X-Plus, Quelle: keine, Center: 750 MHz, Span: 1500 MHz, RBW=VBW: 1000/100/10 kHz, Attn: 0dB, PA eingeschaltet
SSA3032X-Plus, Quel­le: kei­ne, Cen­ter: 750 MHz, Span: 1500 MHz, RBW=VBW: 1000÷100÷10 kHz, Attn: 0dB, PA eingeschaltet

Hier bestä­ti­gen sich die von Dave gemes­se­nen Wer­te zumin­dest annä­hernd: ‑90 dBm, ‑100 dBm und ‑110 dBm beim Rigol und ‑102 dBm, ‑108 dBm und ‑120 dBm beim Sig­lent. Bei den ‑120 dBm muß ich aber schon bei­de Augen zudrücken.

Den­noch ist der Sig­lent sowohl mit als auch ohne PA 10 bis 15 dB bes­ser. Und nicht ver­ges­sen, Dave hat den SSA3021X gemes­sen und nicht den SSA3032X-Plus.

Spek­trum einer DDS mit AD9834

Ein klei­ner Ver­suchs­auf­bau mit einer AD9834 DDS Schal­tung (10-bit DAC) wird mit einem 75 MHz Quarz­os­zil­la­tor außer­halb sei­ner Spe­zi­fi­ka­ti­on betrie­ben, die für die gewähl­te Vari­an­te AD9834BRU eigent­lich nur 50 MHz zulässt. Die Aus­gangs­fre­quenz ist auf 10,7 MHz ein­ge­stellt. Das Tief­pass­fil­ter am Aus­gang ist nicht opti­miert, wie die Breit­band Spek­tral­ana­ly­se zeigt. Bei­de Gerä­te kön­nen eine Tabel­le der gemes­se­nen Peaks anzeigen:

DS815-TG, Quelle: AD9834, Center: 50 MHz, Span: 100 MHz, RBW: 10 kHz, VBW: 10 kHz mit Peak Tabelle
DS815-TG, Quel­le: AD9834, Cen­ter: 50 MHz, Span: 100 MHz, RBW: 10 kHz, VBW: 10 kHz mit Peak Tabelle

SSA3032X-Plus, Quelle: AD9834, Center: 50 MHz, Span: 100 MHz, RBW: 10 kHz, VBW: 10 kHz mit Peak Tabelle
SSA3032X-Plus, Quel­le: AD9834, Cen­ter: 50 MHz, Span: 100 MHz, RBW: 10 kHz, VBW: 10 kHz mit Peak Tabelle

Man erkennt die DDS-Takt­fre­quenz von 75 MHz, die ein­ge­stell­te Aus­gangs­fre­quenz von 10,7 MHz, die jewei­li­gen Spie­gel­fre­quen­zen bei 75 MHz +/- 10,7 MHz.

Nach­fol­gend soll nur das Spek­trum um 10,7 MHz mit ver­schie­de­nen Band- und Spann­brei­ten unter­sucht wer­den. Begin­nen wir bei einer Spann­brei­te von 1 MHz und einer RBW=VBW von 30 Hz:

DS815-TG, Quelle: AD9834, Center: 10.7 MHz, Span: 1 MHz, RBW: 30 Hz, VBW: 30 Hz
DS815-TG, Quel­le: AD9834, Cen­ter: 10.7 MHz, Span: 1 MHz, RBW: 30 Hz, VBW: 30 Hz

SSA3032X-Plus, Quelle: AD9834, Center: 10.7 MHz, Span: 1 MHz, RBW: 30 Hz, VBW: 30 Hz
SSA3032X-Plus, Quel­le: AD9834, Cen­ter: 10.7 MHz, Span: 1 MHz, RBW: 30 Hz, VBW: 30 Hz

Bei­de Gerä­te sehen den Trä­ger bei 10,7 MHz und etwa ‑9,5 dBm. Die gerin­gen Abwei­chun­gen sind irrele­vant und sie ändern sich bei jedem der Gerä­te mit jedem Durch­gang. Bei­de Gerä­te sehen auch die Spu­ren bei +/- 400 kHz bei knapp ‑90 dBm.

Eine wei­te­re Spur bei 10,6 MHz sieht aber nur der Rigol deut­lich, beim Sig­lent ver­schwin­det sie im Rau­schen. Außer­dem steigt das Rau­schen beim Sig­lent stär­ker an, als beim Rigol, je näher man dem Trä­ger kommt. Bei ‑80 dBm erreicht es ein Maxi­mum und sinkt in unmit­tel­ba­rer Nähe zum Trä­ger wie­der auf etwa ‑90 dBm ab. Die­ses Ver­hal­ten wur­de vom Her­stel­ler Sig­lent auf Nach­fra­ge bestä­tigt. Es ist auch nicht auf die­se Ein­stel­lun­gen beschränkt, son­dern es tritt tech­no­lo­gie­be­dingt auch bei ande­ren Fre­quen­zen auf. Das ist ein ech­ter Wehr­muts­trop­fen und ich war kurz davor, das Gerät zurück­zu­ge­ben. Daß ich es nicht getan habe, liegt im wesent­li­chen dar­an, daß ich für ein ähn­lich aus­ge­stat­te­tes Gerät von Rigol noch­mal 1k€ hät­te drauf­le­gen müs­sen. Man wird also wohl oder übel in die­ser Preis­klas­se doch ein paar Abstri­che machen müssen.

Der Rigol zeigt das Ver­hal­ten, das man erwar­tet: das Pha­sen­rau­schen steigt mit der Nähe zum Träger.

Hier noch die Sig­lent-Mes­sung mit einer Peak-Tabelle:

SSA3032X-Plus, Quelle: AD9834, Center: 10.7 MHz, Span: 1 MHz, RBW: 30 Hz, VBW: 30 Hz mit Peak Tabelle
SSA3032X-Plus, Quel­le: AD9834, Cen­ter: 10.7 MHz, Span: 1 MHz, RBW: 30 Hz, VBW: 30 Hz mit Peak Tabelle

Hier die Mes­sun­gen mit 100 kHz Spann­brei­te und RBW=100 Hz:

DS815-TG, Quelle: AD9834, Center: 10.7 MHz, Span: 100 kHz, RBW: 100 Hz, VBW: 100 Hz
DS815-TG, Quel­le: AD9834, Cen­ter: 10.7 MHz, Span: 100 kHz, RBW: 100 Hz, VBW: 100 Hz

SSA3032X-Plus, Quelle: AD9834, Center: 10.7 MHz, Span: 100 kHz, RBW: 100 Hz, VBW: 100 Hz
SSA3032X-Plus, Quel­le: AD9834, Cen­ter: 10.7 MHz, Span: 100 kHz, RBW: 100 Hz, VBW: 100 Hz

Es ist auch jeweils der Rausch­pe­gel im 10 kHz Abstand dar­ge­stellt. Er ist in bei­den Fäl­len kon­si­stent zur Breit­band­mes­sung, unter­schei­det sich aber um mehr als 12 dB. Der Unter­schied ist mit dem deut­lich schlech­te­ren Pha­sen­rau­schen des Rigol zu erklä­ren. Er ist mit <-80 dBm/Hz im 10 kHz Abstand spe­zi­fi­ziert, was bei der ein­ge­stell­ten RBW von 100 Hz 20 dB mehr, also ‑60 dBm erwar­ten lässt. Anders aus­ge­drückt: ein guter Teil des beim Rigol gezeig­ten Rau­schens kommt von sei­nem ein­ge­bau­ten Oszil­la­tor. Hier wür­de ich also dem Sig­lent mehr ver­trau­en, wenn­gleich der Abfall der Rau­schens in Trä­ger­nä­he auch in die­ser Auf­lö­sung noch deut­lich zu sehen ist.

Nach­fol­gend noch ohne Kom­men­ta­re wei­te­re Schmal­band­mes­sun­gen mit Spann­brei­ten von 10 kHz:

DS815-TG, Quelle: AD9834, Center: 10.7 MHz, Span: 10 kHz, RBW: 10 Hz, VBW: 10 Hz
DS815-TG, Quel­le: AD9834, Cen­ter: 10.7 MHz, Span: 10 kHz, RBW: 10 Hz, VBW: 10 Hz

SSA3032X-Plus, Quelle: AD9834, Center: 10.7 MHz, Span: 10 kHz, RBW: 10 Hz, VBW: 10 Hz
SSA3032X-Plus, Quel­le: AD9834, Cen­ter: 10.7 MHz, Span: 10 kHz, RBW: 10 Hz, VBW: 10 Hz

…und 1 kHz:

DS815-TG, Quelle: AD9834, Center: 10.7 MHz, Span: 1 kHz, RBW: 10 Hz, VBW: 1 Hz
DS815-TG, Quel­le: AD9834, Cen­ter: 10.7 MHz, Span: 1 kHz, RBW: 10 Hz, VBW: 1 Hz

SSA3032X-Plus, Quelle: AD9834, Center: 10.7 MHz, Span: 1 kHz, RBW: 10 Hz, VBW: 1 Hz
SSA3032X-Plus, Quel­le: AD9834, Cen­ter: 10.7 MHz, Span: 1 kHz, RBW: 10 Hz, VBW: 1 Hz

Bei die­sen sehr schmal­ban­di­gen Mes­sun­gen kommt das gerin­ge Pha­sen­rau­schen des Sig­lent voll zur Gel­tung. Statt ‑61 dBc beim Rigol sehen wir hier knapp ‑84 dBc im Abstand von 100 Hz zum Trä­ger. Außer­dem ist zu beach­ten, daß der Rigol bei die­sen Ein­stel­lun­gen 100 Sekun­den pro Sweep benö­tigt, der Sig­lent auf­grund der FFT aber nur 0,338 Sekun­den. Da macht das Mes­sen Spaß! Auch aus die­sem Grund woll­te ich das Gerät dann doch nicht wie­der hergeben.

Dar­über­hin­aus gestat­tet der Sig­lent Mes­sun­gen mit RBW=VBW=1Hz und mit einer Spann­brei­te von 100 Hz erhält man dann fol­gen­des hoch­auf­ge­lö­ste Meßergebnis:

SSA3032X-Plus, Quelle: AD9834, Center: 10.7 MHz, Span: 100 Hz, RBW: 1 Hz, VBW: 1 Hz, Average
SSA3032X-Plus, Quel­le: AD9834, Cen­ter: 10.7 MHz, Span: 100 Hz, RBW: 1 Hz, VBW: 1 Hz, Average

Nach die­ser Mes­sung ist das Pha­sen­rau­schen im Abstand von 10 Hz also ‑84 dBc. 

Mes­sun­gen des Sen­de­si­gnals eines ICOM IC-7300 Transceivers

Um auch die Meß­er­geb­nis­se eines hoch­wer­ti­gen Signals zu zei­gen, habe ich das Aus­gangs­si­gnal eines IC-7300 Trans­cei­vers von ICOM gemes­sen. Er wur­de bei 10,125 MHz auf nied­rig­ste Sen­de­lei­stung 1% ein­ge­stellt, was etwa 1 Watt, also 30 dBm ent­spre­chen soll­te. Der Spek­trum­ana­ly­sa­tor wur­de über einen 30 dB Abschwä­cher und einen wei­te­ren 10 dB Abschwä­cher ange­schlos­sen, so daß am Ein­gang etwa ‑10 dBm anlie­gen. Alle Mes­sun­gen sind in der Betriebs­art AM durch­ge­führt wor­den, wobei optio­nal ein 2 kHz Sinu­ssi­gnal an den Audio­ein­gang ange­legt wur­de. Es wird vom PC gespeist, des­sen Audio­pe­gel auf 15% oder 71% ein­ge­stellt wur­de. Das sind will­kür­li­che und rela­ti­ve Pegel, die kei­ne Rück­schlüs­se auf den tat­säch­li­chen abso­lu­ten Signal­pe­gel zulassen.

Der unmo­du­lier­te Trä­ger wird mit etwa ‑8 dBm ange­zeigt, was also +32 dBm Ein­gangs­pe­gel vor den Abschwä­chern ent­spricht. Das wären 1,6 Watt, was in der Betriebs­art AM aber nur 50% der Aus­gangs­lei­stung sind. Tat­säch­lich ent­spricht damit die ein­ge­stell­te Aus­gangs­lei­stung von 1% also tat­säch­lich 3 Watt. Das ist in Ord­nung, gera­de im unte­ren Bereich ist die Ein­stel­lung der Aus­gangs­lei­stung sicher nicht sehr genau.

Der Über­sicht­lich­keit hal­ber sind die Meß­er­geb­nis­se nach­fol­gend als Gale­rie ein­ge­fügt. Klicken auf eine Mes­sung öff­net das jewei­li­ge Bild in vol­ler Auf­lö­sung in einem neu­en Tab.

Der SSA3032X-Plus kann Spek­tren auch als Was­ser­fall­dia­gramm dar­stel­len. Das ist beson­ders hilf­reich bei Signa­len mit klei­nen Pegeln. Man erkennt optisch sehr schnell, wo noch „Schmutz“ im Spek­trum ist.

SSA3032X-Plus, Quelle: IC7300, Center: 10.125 MHz, Modulation: 2kHz@15%, Span: 5 kHz, RBW: 3 Hz, Spectrum display
SSA3032X-Plus, Quel­le: IC7300, Cen­ter: 10.125 MHz, Modu­la­ti­on: 2kHz@15%, Span: 5 kHz, RBW: 3 Hz, Spec­trum display

Die­se Mes­sung zeigt das mit 2 kHz sehr schwach AM-modu­lier­te Signal. Man erkennt deut­lich die Sei­ten­bän­der im Abstand von 2 kHz, aber auch win­zi­ge Sei­ten­band­si­gna­le um den Trä­ger her­um. In der Dar­stel­lung des Spek­trums wür­de man sie wahr­schein­lich als unkor­re­lier­tes Pha­sen­rau­schen übersehen.

Abschlie­ßend noch das Breit­band­spek­trum zwi­schen 1 MHz und 40 MHz:

Bei­de Gerä­te erken­nen neben dem Trä­ger auch die zwei­te und drit­te Ober­wel­le. Es gibt eine Dis­kre­panz über die jewei­li­gen Pegel, was mut­maß­lich der rela­tiv hohen Auf­lö­sungs­band­brei­te von 1 kHz geschul­det ist. Beson­ders beim Rigol füh­ren gerin­ge Auf­lö­sungs­band­brei­ten aber zu sehr lan­gen Meß­zei­ten, was ich hier ver­mei­den wollte.

Außer­dem fällt auf, daß der Rausch­pe­gel unter­halb von etwa 18 MHz um 10 bis 15 dB erhöht ist. Das ist mut­maß­lich auf ein Aus­gangs­fil­ter im IC-7300 zurückzuführen.

Zusam­men­fas­sung

Im Ver­gleich zur vor­he­ri­gen Gene­ra­ti­on, zu der ich den Rigol DSA815-TG zäh­le, haben die Sig­lent SSA3000X Spek­trum­ana­ly­sa­to­ren erheb­li­che Fort­schrit­te gemacht. Die Bild­schirm­auf­lö­sung ist von 800×460 Pixeln und 8″ Dis­play auf 1024×600 Pixel und ein 10.1″ Touch-Dis­play gestie­gen, die Meß­ge­schwin­dig­keit wur­de durch die ein­ge­bau­te FFT enorm erhöht und die Auf­lö­sungs­band­brei­te wur­de auf 1 Hz redu­ziert. Gleich­zei­tig wur­de das Pha­sen­rau­schen um min­de­stens 15 dB redu­ziert, beim Rigol waren es ‑80 dBc/Hz, beim Sig­lent ‑95 dBc/Hz, jeweils im 10 kHz Abstand.

Ein nicht leicht zu ver­dau­en­der Wehr­muts­trop­fen ist die oben gezeig­te min­de­stens 10 dB Rau­sch­über­hö­hung im Abstand von +/- 50 kHz zum Trä­ger. Das mag für die eine oder ande­re Anwen­dung ein K.O.-Kriterium sein. Ich den­ke aber, daß sich in der Preis­klas­se zur Zeit nichts bes­se­res fin­den lässt. Wenn man das Ver­hal­ten kennt, wird man damit leben kön­nen, zumal der Effekt gerin­ger wird, wenn der Trä­ger aus dem Sicht­feld bewegt wird.

Trotz der oben beschrie­be­nen Schwä­che wür­de ich den SSA3032X Plus, bzw. einen sei­ner Geschwi­ster, den SSA3015X Plus, SSA3021X Plus oder gar den SSA3075X Plus empfehlen.

Vor­schau auf Teil 2

Im näch­sten Teil wer­de ich eini­ge Mes­sun­gen mit den ein­ge­bau­ten Track­ing­ge­ne­ra­to­ren zei­gen. In der Bastel­ki­ste fin­den sich ein paar gefrä­ste Fil­ter­schal­tun­gen, z.B. ein 1,4 GHz Strei­fen­lei­tungs­fil­ter und ein 800 MHz Band­paß­fil­ter. Bei­de Fil­ter wur­den mit dem Ansoft Desi­gner SV2 ent­wor­fen und auf FR‑4 Basis­ma­te­ri­al gefräst. Auch ein Fil­ter mit ein­ge­bau­tem MMIC Ver­stär­ker soll­te für Bei­spiel­mes­sun­gen ver­wend­bar sein.

Mit einer eben­falls auf FR‑4 gefrä­sten 23 cm Patch-Anten­ne und einem exter­nen Richt­kopp­ler wer­de ich Refle­xi­ons­mes­sun­gen durchführen.

Hier die Links zu Teil 2 und Teil 3.