Yoo­CNC Con­trol­ler mit ESTLCAM

Seit etwa zehn Jah­ren betrei­be ich eine klei­ne chi­ne­si­sche CNC-Frä­se mit Yoo­CNC Con­trol­ler. Schritt­ver­lu­ste beglei­ten mich dabei von Anfang an. Ich konn­te sie auf ein erträg­li­ches Maß redu­zie­ren, indem ich ein paar im CNC-Forum emp­foh­le­ne Modi­fi­ka­tio­nen durch­ge­führt habe. Inzwi­schen betrei­be ich die Frä­se nicht mehr mit Mach3, son­dern bin auf den ESTLCAM CNC-Con­trol­ler umge­stie­gen, die ESTLCAM CAM-Soft­ware benut­ze ich schon von Anfang an.

Zum Testen der Frä­se habe ich ein klei­nes CAM-File geschrie­ben, das ein­fach nur fünf­zig­mal alle Ach­sen nach­ein­an­der von ihrer Mini­mal­po­si­ti­on zur Maxi­mal­po­si­ti­on und zurück fährt. Das nut­ze ich übri­gens auch nach dem gele­gent­li­chen Ölen der Spin­deln und Füh­rungs­schie­nen zum Ver­tei­len und „Ein­mas­sie­ren“ des Öls. Vor und nach dem Test­lauf füh­re ich eine Refe­renz­fahrt aus und ESTLCAM zeigt nach der zwei­ten Refe­renz­fahrt die Schritt­ver­lu­ste in Schrit­ten und in Mil­li­me­ter an. Schritt­ver­lu­ste im ein­stel­li­gen Bereich sind dabei zu ver­nach­läs­si­gen, denn deren Ursa­che ist wohl die Unge­nau­ig­keit der End­schal­ter. Ver­lu­ste um Mil­li­me­ter­bruch­tei­le oder gar um meh­re­re Mil­li­me­ter sind nicht hinnehmbar.

Bei die­sem Test­lauf pas­siert es immer wie­der, daß der Y‑Schrittmotor unter lau­tem Rat­tern nahe­zu ste­hen bleibt. Er dreht sich zwar noch sehr lang­sam, aber nicht mehr mit der ange­leg­ten Schritt­fre­quenz. Er hat offen­sicht­lich aus irgend­ei­nem Grun­de abge­bremst oder ganz gestoppt und kann nun nicht mehr ohne Beschleu­ni­gung mit der Takt­fre­quenz mit­hal­ten. Da ich den Schritt­mo­tor im Leer­lauf von Hand durch­dre­hen kann, ohne daß irgend­wo ein erhöh­ter Wider­stand zu bemer­ken wäre, habe ich die Steue­rung in Ver­dacht. Dem wider­spricht aller­dings, daß der Feh­ler auf der­sel­ben Ach­se auf­tritt, wenn ich die Aus­gän­ge wech­se­le. Wahr­schein­lich hat das Pro­blem meh­re­re Ursachen.

Beim Frä­sen der Klam­mern für mei­nen neu­en Anten­nen­mast habe ich mich aber nun der­art geär­gert, daß ich mich ent­schlos­sen habe, einen neu­en Con­trol­ler mit pro­fes­sio­nel­len End­stu­fen auf­zu­bau­en. Das soll dann auch der Ein­stieg für eine neue Frä­se sein. Das wer­de ich dem­nächst in einem sepa­ra­ten Arti­kel beschreiben.

Der Ärger und die Pla­nung für den neu­en Con­trol­ler hat dazu geführt, daß ich mir den alten Yoo­CNC-NT65-3X-Con­trol­ler noch­mal genau­er ange­schaut habe. Mit Logik­ana­ly­sa­tor und Oszil­lo­skop bewaff­net, habe ich mir die Signa­le direkt an den Steu­er­pins des TB6560AHQ ange­schaut und auch den Feh­ler­fall beob­ach­tet. Ergeb­nis: alle Schritt­im­pul­se kom­men kor­rekt auf den Signal­pins an. Auch im Feh­ler­fall fehlt kein ein­zi­ger Impuls und auch die Impuls­län­ge ist immer kor­rekt. Die Schritt­ver­lu­ste pas­sie­ren also am Aus­gang der Trei­ber oder eben doch in der Mecha­nik des Step­pers oder der Spindel.

Wie im oben ver­link­ten Forum emp­foh­len, habe ich die 24V Span­nungs­ver­sor­gung noch­mal geglät­tet, indem ich in der Y‑Endstufe den 1000µF Elko ersetzt habe und zwei neue 1µF und 0,1µF Kera­mik­kon­den­sa­to­ren par­al­lel geschal­tet habe. Außer­dem habe ich die ESTLCAM Ein­stel­lun­gen ange­passt. Der TB6560AHQ ver­langt in der Stan­dard­kon­fi­gu­ra­ti­on eine mini­ma­le Impuls­brei­te von 30µs. Außer­dem soll der CLK-Ein­gang für die Schritt­im­pul­se im Ruhe­zu­stand auf high lie­gen, denn nach einer Mil­li­se­kun­de schal­tet die Yoo­CNC-Steue­rung dann die Strom­stär­ke auf 20% her­un­ter, womit die Lei­stungs­auf­nah­me auf 4% sinkt. Die Schritt­mo­to­ren erwär­men sich dadurch deut­lich weniger.

Nach allen genann­ten Maß­nah­men ist die Feh­ler­häu­fig­keit nun erheb­lich gesun­ken, lei­der nicht ganz auf null. Da der Feh­ler nur auf der Y‑Achse auf­tritt, habe ich den maxi­ma­len Vor­schub für die­se Ach­se nied­ri­ger ein­ge­stellt. Die fol­gen­den ESTLCAM Ein­stel­lun­gen funk­tio­nie­ren nun mit dem Yoo­CNC Con­trol­ler im wesent­li­chen fehlerfrei:

X-, Y- und Z-Achse:
Schritte je Umdrehung: 1600 Achtelschritte (1,8° pro Puls, 200 Vollschritte, je 8 Mikroschritte)
Weg je Umdrehung: 4 mm (die Spindeln haben 4 mm Steigung)
Maximalvorschub X: 2200mm/min
Maximalvorschub Y: 1500mm/min
Maximalvorschub Z: 2200mm/min
Trägheit: 85% (default, nicht geändert)

Richtung umkehren: X:nein, Y und Z: ja

Für alle Achsen:
Beschleunigungsweg: 4 mm
Startvorschub: 60 mm/min
Schrittimpulslänge: 32µs (min: 30µs)
Schrittpause: 1
Schrittsignal invertieren: nein (wird durch eingebauten 74HC14 invertiert)

Der Aus­druck „im wesent­li­chen“ soll andeu­ten, daß es alle Jubel­jah­re lei­der doch noch einen Feh­ler gibt, immer auf der Y‑Achse. Das ist aber so sel­ten, daß ich damit arbei­ten kann. Die höhe­re Vor­schub­ge­schwin­dig­keit auf den X- und Z‑Achsen ver­ur­sacht kei­ne Pro­ble­me. Ob die Pro­ble­me auf der Y‑Achse tat­säch­lich von der Vor­schub­ge­schwin­dig­keit abhän­gen, ist nicht gesichert.

Die hier ein­ge­stell­te maxi­ma­le Vor­schub­ge­schwin­dig­keit wird von ESTLCAM beim Ver­fah­ren der Frä­se im Leer­lauf ver­wen­det. Beim Frä­sen gel­ten die beim Erstel­len des CAM-Files ange­ge­be­nen Wer­te, die natür­lich die hier ein­ge­stell­ten Maxi­mal­wer­te nicht über­schrei­ten dürfen.

Draht­an­ten­ne für alle Kurz­wel­len-Ama­teur­funk­bän­der (Teil 1)

Bevor die Tage deut­lich kür­zer wer­den und das Wet­ter wie­der unan­ge­nehm kühl wird, will ich mei­ne pro­vi­so­ri­sche end­ge­spei­ste Draht­an­ten­ne durch eine sta­bi­le­re Kon­struk­ti­on erset­zen. Wie hier schon ange­deu­tet, soll der Strah­ler län­ger wer­den und ein defi­nier­tes Gegen­ge­wicht anstatt des jet­zi­gen am Bal­kon­ge­län­der geer­de­ten Pig­tails ange­schlos­sen wer­den. Die­ser erste Teil beschreibt die Pla­nung und die Simu­la­ti­on der Anten­ne. Im zwei­ten Teil soll der tat­säch­li­che Auf­bau und die Mes­sung mit einem VNWA beschrie­ben wer­den. Die dann tat­säch­lich imple­men­tier­ten Dimen­sio­nen wer­den in eine ange­pass­te 4nec2-Simu­la­ti­on ein­flie­ßen, aus der dann die elek­tri­schen und magne­ti­schen Feld­da­ten für den Watt­wäch­ter (ein kosten­frei­es Pro­gramm der Bun­des­netz­agen­tur zur Bewer­tung von Ama­teur­funk­stel­len) extra­hiert wer­den. Damit wird die Anten­ne dann bei der Bun­des­netz­agen­tur, dem dafür zustän­di­gen Amt, angemeldet.

Vor­über­le­gun­gen

Eine ein­fa­che Draht­an­ten­ne, die auf allen gewünsch­ten Bän­dern reso­nant ist, gibt es nicht. Daher soll auch bei der neu­en Anten­ne wie­der ein Tuner für die Abstim­mung sor­gen. Mein selbst­ge­bau­ter Tuner funk­tio­niert zwar hin­rei­chend gut, aber ich woll­te auch immer schon mal einen kom­mer­zi­el­len Tuner aus­pro­bie­ren. Daher habe ich den zu mei­nem IC-7300 pas­sen­den AH-730 von ICOM besorgt. Er soll fast jeden Draht ab 7 m Län­ge auf allen Kurz­wel­len­bän­dern inklu­si­ve 160 m und 6 m anpas­sen kön­nen. Viel­fa­che von λ/2 sol­len aber ver­mie­den wer­den, denn dann geht der Strah­lungs­wi­der­stand gegen unend­lich, was von kei­nem Tuner mehr mit ver­nünf­ti­gem Auf­wand ange­paßt wer­den kann. Die Span­nung müss­te dann zu hoch wer­den. Die Doku­men­ta­ti­on des AH-730 weist aus­drück­lich dar­auf hin, sol­che Län­gen zu vermeiden.

Die Pla­nung

Die Anten­ne soll vom Bal­kon aus gespeist wer­den, weil dort das Anten­nen­ka­bel vom Trans­cei­ver ankommt und dort auch der Anten­nen­um­schal­ter instal­liert ist. Die Aus­deh­nung des Grund­stücks lässt vom Bal­kon aus in Süd­rich­tung etwa 25 m Län­ge zu, in Nord­rich­tung etwa 8 m. Wegen der not­wen­di­gen Abspan­nung der Masten muß ich min­de­stens drei Meter Abstand zu der jewei­li­gen Grund­stücks­gren­ze hal­ten. Das ist nicht zuletzt auch für die Anmel­dung bei der Bun­des­netz­agen­tur not­wen­dig. Die Anten­ne soll mit mode­ra­ten 100 Watt betrie­ben wer­den. Kei­ne sehr hohe Lei­stung, aber eben deut­lich mehr als die nach BEMFV anmel­de­frei­en 10 W EIRP. Da hilft es immer, wenn der Abstand zum unkon­trol­lier­ten Bereich mög­lichst groß ist.

Im Moment habe ich als Pro­vi­so­ri­um einen 20 m lan­gen Draht instal­liert, der für 160 m und 80 m eigent­lich zu kurz ist. Um die Draht­län­ge zu erhö­hen, sol­len bei­de Schen­kel gefal­tet wer­den, so wie es bei dem 17‑m und 15-m-Falt­di­pol erfolg­reich aus­pro­biert wur­de. Wegen der geo­me­tri­schen Umstän­de wer­den die bei­den Schen­kel ungleich lang. Die Län­gen wur­den so gewählt, daß sie auf kei­nem der Kurz­wel­len­bän­der ein Viel­fa­ches von λ/2 lang sind. Hier ist ein ein­fa­ches Libre­Of­fice Spreadsheet, mit dem die „guten“ und „schlech­ten“ Draht­län­gen berech­net wer­den können:

Die fol­gen­de, nicht maß­stabs­ge­treue Skiz­ze zeigt die Dimen­sio­nie­rung der geplan­ten Antenne:

Dimensionierung der gefalteten Langdrahtantenne
Dimen­sio­nie­rung der gefal­te­ten Langdrahtantenne

Der süd­li­che Draht ist nun ins­ge­samt 32,20 m lang, der nörd­li­che 10,60 m. Bei­de Län­gen lie­gen in einem „guten“ Bereich, sie sind kein Viel­fa­ches von λ/2 auf einem der Ama­teur­funk­bän­der. Der tat­säch­li­che Auf­bau wird zei­gen, ob alles paßt. Zunächst aber mal zur Simulation.

Simu­la­ti­on mit 4nec2

Hier ist die Ein­ga­be­da­tei für die 4nec2-Simulation:

Breit­band­si­mu­la­ti­on

Die Breit­band­si­mu­la­ti­on von 1 MHz bis 30 MHz zeigt aus­ge­präg­te Reso­nan­zen am unte­ren Ende des 80-m-Ban­des und unter­halb des 40-m-Ban­des. Wei­te­re Reso­nan­zen bei höhe­ren Fre­quen­zen sind wei­ter von 50 Ω ent­fernt und wei­sen daher ein schlech­te­res Steh­wel­len­ver­hält­nis auf.

Simulationsergebnis der Langdrahtantenne, SWR zwischen 1 und 30 MHz
Simu­la­ti­ons­er­geb­nis der Lang­draht­an­ten­ne, SWR zwi­schen 1 und 30 MHz
Simulationsergebnis der Langdrahtantenne, Impedanz zwischen 1 und 30 MHz
Simu­la­ti­ons­er­geb­nis der Lang­draht­an­ten­ne, Impe­danz zwi­schen 1 und 30 MHz

Die Simu­la­ti­on von 3 MHz bis 8 MHz zeigt die Reso­nan­zen etwas genauer.

Simulationsergebnis der Langdrahtantenne, SWR zwischen 3 und 8 MHz
Simu­la­ti­ons­er­geb­nis der Lang­draht­an­ten­ne, SWR zwi­schen 3 und 8 MHz
Simulationsergebnis der Langdrahtantenne, Impedanz zwischen 3 und 8 MHz
Simu­la­ti­ons­er­geb­nis der Lang­draht­an­ten­ne, Impe­danz zwi­schen 3 und 8 MHz

Durch Kür­zen des süd­li­chen Anten­nen­drah­tes um etwa 2 m las­sen sich die­se Reso­nan­zen leicht in das 80-m- und 40-m-Band schie­ben, so daß dort das Steh­wel­len­ver­hält­nis auf unter 2 sinkt. Auf die­sen bei­den Bän­dern wäre die Anten­ne dann ohne Tuner betreib­bar. Das führt aber dazu, daß der Wirk­wider­stand im 20-m‑, 10-m- und 6‑m-Band auf über 1 kΩ steigt. Auch das Spreadsheet zeigt bei die­ser Draht­län­ge genau für die genann­ten Bän­der „rot“. Die Anpas­sung dürf­te dann schwie­rig wer­den. In der jet­zi­gen Kon­fi­gu­ra­ti­on sind nun aller­dings die 17-m- und 12-m-Bän­der grenz­wer­tig. Man kann wohl nicht alles haben, even­tu­ell muß ich den Draht spä­ter doch noch kürzen.

Schmal­band­si­mu­la­ti­on

Nach­fol­gend zur Doku­men­ta­ti­on die Schmal­band­si­mu­la­tio­nen für alle Ama­teur­funk­bän­der auf Kurzwelle:

Im 17-m-Band liegt der Wirk­wider­stand zwi­schen 1 und 2 kΩ, im 12-m-Band bei etwa 1 kΩ. Die Draht­län­ge von 32,20 m ist im 17-m-Band nahe bei 4×λ/2 und im 12-m-Band bei knapp 6×λ/2. Die Pra­xis muß zei­gen, ob das funk­tio­niert. Pro­ble­me wären nicht wei­ter ver­wun­der­lich. Man soll­te immer im Kopf behal­ten, daß 100 Watt Sen­de­lei­stung an einem 2 kΩ Wider­stand eine Span­nung von 450 V am Spei­se­punkt bedeu­ten (√(P×R)).

Das ande­re Extrem bil­det das 60-m-Band und das 160-m-Band ab. Auf die­sen Bän­dern liegt der Wirk­wider­stand bei 10 Ω bis 20 Ω. Bei­des soll­te gut mit einem Anten­nen­tu­ner abstimm­bar sein, daher erwar­te ich dort kei­ne Probleme.

Die Anten­nen­ma­sten

Als Anten­nen­ma­sten sol­len zwei 12-m-Glas­fa­ser­ma­sten zum Ein­satz kom­men. Einer davon steht bereits seit drei Jah­ren im Gar­ten und soll nun etwas ver­setzt und bes­ser abge­spannt wer­den. Der zwei­te ist ein Neu­kauf und besteht nur aus sie­ben Ele­men­ten. Wegen der Hang­la­ge wird der süd­li­che Mast mit sei­nen zwölf Ele­men­ten auf etwa 10 m über dem Boden aus­ge­zo­gen, der obe­re mit sie­ben Ele­men­ten auf 6 m. Ihre Spit­zen wer­den dann etwa die­sel­be Höhe haben und die Anten­nen­dräh­te sol­len hori­zon­tal verlaufen.

Der Her­stel­ler der Masten emp­fiehlt und ver­treibt sel­ber gewöhn­li­che Schlauch­schel­len aus Edel­stahl zum Fixie­ren der ein­zel­nen Roh­re. Sie wer­den mit Schrumpf­schlauch umman­telt und klem­men so die Roh­re gegen Ver­schie­ben fest. Das funk­tio­niert soweit, aber ich fin­de es sub­op­ti­mal und „geba­stelt“. Außer­dem brau­che ich Ele­men­te zum Abspan­nen des Mastes und zum Hal­ten der Rol­len, auf denen der Anten­nen­draht auf­ge­spannt wird. Das ist eine loh­nen­de Auf­ga­be für eine CNC-Fräse.

Daher habe ich die nach­fol­gend beschrie­be­nen Ele­men­te aus einer 20 mm dicken Hart-PVC-Plat­te her­aus­ge­fräst. Der Innen­durch­mes­ser ist für das jewei­li­ge Seg­ment ange­passt und zwar der­art, daß noch eine pas­send zurecht­ge­schnit­te­ne 2 mm dicke Gum­mi­un­ter­la­ge als Schutz dazwi­schen geklemmt wer­den kann. Die Klem­men wer­den mit einer 4‑mm-Schrau­be auf dem jewei­li­gen Seg­ment fest­ge­klemmt. Die Aus­frä­sun­gen sind not­wen­dig, damit die Klem­me hin­rei­chend bieg­bar wird.

Segmentklemme
Seg­ment­klem­me

Eine Seg­ment­klem­me dient zum Fest­klem­men eines Seg­ments des Anten­nen­masts. Sie ersetzt die Schlauchschelle.

Segmentklemme mit zwei Haltern für die Abspannung
Seg­ment­klem­me mit zwei Hal­tern für die Abspannung

Eine Seg­ment­klem­me mit Hal­tern klemmt einer­seits das Seg­ment fest und hat zusätz­lich noch im 120°-Winkel zwei Hal­ter für Abspannseile.

Segmentklemme mit Rollenhalter
Seg­ment­klem­me mit Rollenhalter

Eine Seg­ment­klem­me mit Rol­len­hal­ter hat zwei lan­ge Aus­le­ger, zwi­schen denen eine Rol­le befe­stigt wird.

Die seit­li­chen Boh­run­gen für die Klemm­schrau­be und die Hal­ter wer­den in einem zwei­ten Arbeits­schritt manu­ell seit­lich ausgeführt.

Rolle
Rol­le

Die bei­den Rol­len an jedem Mast bestehen aus einer inne­ren 3 mm dicken PVC-Schei­be mit 50 mm Durch­mes­ser und zwei äuße­ren Schei­ben mit 70 mm Durch­mes­ser. Sie sind ver­klebt und zusätz­lich ver­schraubt. Sie wer­den mit einem durch­ge­steck­ten 6‑mm-Mes­sing­rohr an dem oben gezeig­ten Rol­len­hal­ter befe­stigt. Die­ses Mes­sing­rohr hat einen Innen­durch­mes­ser von 4 mm und wird mit einer durch­ge­hen­den 4‑mm-Schrau­be mit Stopp­mut­ter gehal­ten. Das Mes­sing­rohr bil­det so ein Gleit­la­ger, auf dem sich die Rol­le frei dre­hen kann.

Die Rol­len sind im Abstand von 195 cm am Mast befe­stigt, so daß die Anten­nen­dräh­te den geplan­ten Abstand von 2 m von­ein­an­der haben.

Damit dürf­te die Pla­nung und die Vor­be­rei­tung hin­rei­chend beschrie­ben sein. In den näch­sten Tagen geht’s an den Auf­bau. Die Erfah­run­gen wer­de ich im zwei­ten Teil beschreiben.

Hier ist der zwei­te Teil

Falt­di­pol für das 15-m-Band

Den hier bereits beschrie­be­nen Falt­di­pol für das 17-m-Band habe ich nun gekürzt und für 15 m umge­baut. Er war auf 17 m sowie­so noch nicht ganz reso­nant und ich hat­te den Ehr­geiz, mit dem Fuß­punkt­wi­der­stand näher an 50 Ω zu kom­men. Das gelingt am ein­fach­sten durch das Ver­kür­zen der gefal­te­ten Tei­le des Dipols, wodurch sich dann der nicht gefal­te­te Teil ver­län­gert. Die Gesamt­län­ge der Strahl­erhälf­ten muß ja gleich blei­ben, denn sonst ver­schiebt man die Reso­nanz. Das hät­te beim 17-m-Band nicht mehr ganz auf die ver­füg­ba­re Län­ge des Bal­kons gepasst.

Durch ite­ra­ti­ves Aus­pro­bie­ren haben sich nun die hier doku­men­tier­ten Dimen­sio­nen ergeben:

Mechanische Abmessungen des 15-m-Faltdipols

Hier die s11 Mess­wer­te, gemes­sen mit dem DG8SAQ VNWA:

s11 Messwerte des fertig installierten 15-m-Faltdipols
s11 Mess­wer­te des fer­tig instal­lier­ten 15-m-Faltdipols

Die rote Kur­ve zeigt die Impe­danz im Smith-Dia­gramm und die grü­ne Kur­ve das Steh­wel­len­ver­hält­nis. Die blau­en Krei­se kenn­zeich­nen die SWR=2 und SWR=3 Gren­zen. Die Mar­ker sind auf Band­an­fang, Band­mit­te und Band­ende des 15-m-Ban­des gesetzt. Das Steh­wel­len­ver­hält­nis ist über das gan­ze Band deut­lich unter 2. Man erkennt auch, daß das Ziel erreicht wur­de, mög­lichst nahe an eine reel­le Impe­danz von 50 Ω zu kommen.

Abschlie­ßend noch ein paar Fotos, die die mecha­ni­sche Kon­struk­ti­on zeigen.

Aufhängung an der südöstlichen Seite.
Auf­hän­gung an der süd­öst­li­chen Seite.

An jeder Dop­pel­rol­le ist eine Augen­schrau­be zur Befe­sti­gung ange­bracht. Auf die­ser Sei­te ist ein Draht­span­ner mon­tiert, über den die Anten­ne stramm­ge­zo­gen wird. Der Abstand zur Dach­rin­ne beträgt nur eini­ge Zen­ti­me­ter, was mut­maß­lich nicht ohne Rück­wir­kung auf die oben gemes­se­ne Impe­danz bleibt.

Aufhängung an der nordwestlichen Seite.
Auf­hän­gung an der nord­west­li­chen Seite.

Auf der nord­west­li­chen Sei­te wur­de nun eine Feder ein­ge­baut. Sie soll schlag­ar­ti­ge Bela­stun­gen bei star­ken Stür­men etwas abfe­dern. Es ist nicht aus­zu­schlie­ßen, daß sich dadurch bei bestimm­ten Fre­quen­zen mecha­ni­sche Reso­nan­zen erge­ben, die kon­tra­pro­duk­tiv sind. Idea­ler­wei­se müss­te noch ein Dämp­fungs­glied ein­ge­baut wer­den, aber man kann’s auch über­trei­ben. Den­noch, ich wer­de das beobachten.

Zugseil zwischen den gefalteten Teilen des Dipols (oben).
Zug­seil zwi­schen den gefal­te­ten Tei­len des Dipols (oben).

Zug­seil und Dipol sind jeweils mit Kau­schen ver­se­hen und mit Seil­klem­men aus Edel­stahl befe­stigt. Zum ein­fa­chen Lösen der Ver­bin­dung sind han­dels­üb­li­che Kara­bi­ner­ha­ken ein­ge­setzt, natür­lich eben­falls aus Edel­stahl. Es macht Spaß, mit ordent­li­chem Werk­zeug und ordent­li­chen Bau­tei­len zu arbeiten.

Man­tel­wel­len als Fol­ge sym­me­tri­scher und asym­me­tri­scher Quel­len und Senken

Die­ser Bei­trag erklärt die Unter­schie­de sym­me­tri­scher und asym­me­tri­scher Strom- und Span­nungs­quel­len und Sen­ken. Er zeigt anhand von Spi­ce-Simu­la­tio­nen, was pas­siert, wenn die Sym­me­trie zwi­schen Quel­le und Sen­ke gebro­chen wird und wie man die Fol­gen davon mini­miert. Obwohl die Über­le­gun­gen glei­cher­ma­ßen für Gleich- und Wech­sel­span­nung bzw. Gleich- und Wech­sel­strom jeder Fre­quenz gel­ten, ist der Ein­fach­heit hal­ber nach­fol­gend immer von Wech­sel­span­nung die Rede. Da es um Funk­an­wen­dun­gen geht, soll­te man immer in der MHz-Kate­go­rie den­ken, eher nicht an 50 Hz.

Als Mas­se bezeich­net man übli­cher­wei­se das Refe­renz­po­ten­ti­al inner­halb einer elek­tro­ni­schen Ein­heit. Um ein gerä­te­über­grei­fen­des Refe­renz­po­ten­ti­al zu haben, wer­den die Mas­sen ein­zel­ner Gerä­te in der Regel zusam­men­ge­schlos­sen und geer­det, also mit der Gebäu­de­er­dung verbunden.

Defi­ni­ti­on

Der Begriff Sym­me­trie bezieht sich hier auf das Refe­renz­po­ten­ti­al, nor­ma­ler­wei­se also die Mas­se. Eine asym­me­tri­sche Quel­le oder Sen­ke hat die Mas­se als fixes Refe­renz­po­ten­ti­al. Das Signal am ande­ren Pol wird immer gegen die­se Mas­se gemes­sen und kann dem­ge­gen­über belie­bi­ge posi­ti­ve und nega­ti­ve Wer­te anneh­men. Das Mas­se­po­ten­ti­al bleibt dabei immer kon­stant und hat defi­ni­ti­ons­ge­mäß eine Span­nung von null Volt. Es ist also gegen­über dem Signal pri­vi­le­giert und nicht austauschbar.

Asymmetrische Spannungsquelle
Asym­me­tri­sche Spannungsquelle

Bei einer sym­me­tri­schen Quel­le sind bei­de Pole gleich­be­rech­tigt. Sie kön­nen einen Mas­se­be­zug haben, müs­sen das aber nicht. Span­nun­gen wer­den nur zwi­schen den bei­den Polen gemes­sen. Sie kön­nen gegen­ein­an­der getauscht wer­den, wodurch sich ledig­lich die Pha­se um 180° dreht.

Symmetrische Spannungsquelle
Sym­me­tri­sche Spannungsquelle

Falls ein Mas­se­be­zug der sym­me­tri­schen Quel­le vor­han­den ist, muß die­se Mas­se jeder­zeit auf dem mitt­le­ren Poten­ti­al die­ser bei­den Pole lie­gen, denn sonst ist die Quel­le nicht mehr sym­me­trisch. Den klas­si­schen Fall einer sym­me­tri­schen Span­nungs­quel­le stellt ein Trans­for­ma­tor mit zwei gleich­ar­ti­gen Sekun­där­wick­lun­gen dar, die in der Mit­te mit­ein­an­der und mit der Mas­se ver­bun­den sind.

Symmetrische Spannungsquelle mit Massebezug
Sym­me­tri­sche Span­nungs­quel­le mit Massebezug

Elek­tri­sches Verhalten

Poten­ti­al­freie Last

Der Anschluß einer sym­me­tri­schen Last an eine sym­me­tri­sche oder asym­me­tri­sche Span­nungs­quel­le zeigt kei­ne Überraschungen.

Simulation einer asymmetrischen Spannungsquelle
Simu­la­ti­on einer asym­me­tri­schen Spannungsquelle

Hier wird eine 1 MHz Sinus­span­nung von 10Veff an einen reel­len 50 Ω Wider­stand ange­legt. Die am Wider­stand R1 umge­setz­te Lei­stung beträgt 2 W. Dar­an ändert sich nichts, wenn man die Mas­se weg­lässt. Aller­dings will Spi­ce immer einen Mas­se­be­zug haben, die Simu­la­ti­on wür­de ohne die Mas­se­ver­bin­dung also scheitern.

In der Rea­li­tät sind die bei­den Zulei­tun­gen zu R1 aller­dings nicht ide­al. Sie haben einen ohm­schen Wider­stand, eine Induk­ti­vi­tät und eine Kapa­zi­tät. Simu­lie­ren wir mal nur den ohm­schen Wider­stand und ver­nach­läs­si­gen wir die Impedanzen.

Simulation einer asymmetrischen Spannungsquelle und des Zuleitungswiderstands
Simu­la­ti­on einer asym­me­tri­schen Span­nungs­quel­le und des Zuleitungswiderstands

Es wur­de will­kür­lich ein Lei­tungs­wi­der­stand von 1 Ω je Lei­tung ange­nom­men. Dadurch sinkt die in R1 umge­setz­te Lei­stung auf 1,85 W. Wich­ti­ger ist hier aber die Dif­fe­renz der Strö­me (rote Linie), die durch die Zulei­tun­gen R4 und R5 flie­ßen: die­se Dif­fe­renz ist null. Die Strö­me sind also jeder­zeit völ­lig gleich.

Ein sym­me­tri­scher Dipol als Last

Wie sieht das nun aus, wenn wir einen sym­me­tri­schen Dipol anschlie­ßen, des­sen Impe­danz bei Reso­nanz 50 Ω reell sein soll (was bekannt­lich nur annä­hernd stimmt), sich also von dem oben gezeig­ten Wider­stand nicht unter­schei­det. Dabei soll ein Dipol-Arm an UR11 ange­schlos­sen wer­den, der ande­re an UR12.

Der Dipol erfüllt nicht die Erwar­tung, daß UR12, wenn auch über 1 Ω, auf Mas­se­po­ten­ti­al bleibt. Der Dipol ist frei auf­ge­hängt und bei­de Pole sind gleich­wer­tig, er ist sym­me­trisch. Über die gal­va­ni­sche Kopp­lung an UR11 und UR12 hin­aus, ist der Dipol auch durch sein elek­tro­ma­gne­ti­sches Feld mit Erde und Mas­se ver­bun­den. Die Abstrah­lung die­ses elek­tro­ma­gne­ti­schen Fel­des ist ja letzt­lich sei­ne Auf­ga­be. Es darf nicht igno­riert wer­den. Der Dipol gene­riert sich damit sein eige­nes mit­ti­ges Bezugs­po­ten­ti­al und damit sieht die Rea­li­tät nun fol­gen­der­ma­ßen aus:

Simulation einer symmetrischen Last an einer asymmetrischen Spannungsquelle
Simu­la­ti­on einer sym­me­tri­schen Last an einer asym­me­tri­schen Spannungsquelle

Der Last­wi­der­stand von 50 Ω ist nun gleich­mä­ßig in R1 und R2 von jeweils 25 Ω auf­ge­teilt und deren mitt­le­re Ver­bin­dung ist über einen Wider­stand R3 an die Erde gelegt. Das soll ver­ein­facht die elek­tro­ma­gne­ti­sche Kopp­lung des Dipols zu Erde simu­lie­ren. Die tat­säch­li­che Grö­ße von R3 ist für das Ver­ständ­nis nicht rele­vant. Hier wur­den 100 Ω gewählt, damit der Effekt deut­lich sicht­bar wird: die Strö­me über R4 und R5 glei­chen sich jetzt nicht mehr aus. Wenn man R5 als den Außen­lei­ter eines Koax­ka­bels betrach­tet, die Abschir­mung, fließt nun ein Strom in die­sem Man­tel, ein Man­tel­strom. Damit liegt die Abschir­mung nicht mehr auf einem ein­heit­li­chen Poten­ti­al, was bei grö­ße­ren Sen­de­lei­stung zu aller­lei teils über­ra­schen­den, aber uner­wünsch­ten, Effek­ten führt. Der auf­fäl­lig­ste davon ist mei­stens die Ein­strah­lung in ande­re elek­tro­ni­sche Gerä­te, wie z.B. einen PC. Wenn der bei Druck auf die Sen­de­ta­ste ein­friert, wenn Maus oder Tasta­tur ver­rückt spie­len, dann sind mei­stens Man­tel­wel­len dafür verantwortlich.

Die Ret­tung: ein Symmetrierer

Um die­se Man­tel­strö­me zu ver­mei­den, muß das asym­me­tri­sche Signal aus dem Koax­ka­bel zum Spei­sen des Dipols an des­sen Ein­spei­se­punkt sym­me­triert wer­den. Die­se Funk­ti­on über­nimmt ein Balun (balanced-unbalan­ced), der übli­cher­wei­se als Trans­for­ma­tor auf­ge­baut ist.

Simulation einer symmetrischen Last an einer asymmetrischen Spannungsquelle mit Symmetrierer
Simu­la­ti­on einer sym­me­tri­schen Last an einer asym­me­tri­schen Span­nungs­quel­le mit Symmetrierer

In die­ser Simu­la­ti­on wird ein Strom­trans­for­ma­tor ver­wen­det. Bei­de Wick­lun­gen, L1 und L2, sol­len eine Induk­ti­vi­tät von jeweils 500 µH haben. Die Spi­ce-Anwei­sung „K1 L1 L2 1“ besagt, daß die Spu­len L1 und L2 maxi­mal gekop­pelt sind. Der letz­te Para­me­ter kann zwi­schen 0 und 1 lie­gen. Hier ist also eine idea­ler Tra­fo simu­liert, den es so in der Pra­xis nicht gibt.

Die Simu­la­ti­on zeigt, daß die Sum­me der Strö­me in R4 und R5 gegen null geht. Die Man­tel­wel­le wur­de also erheb­lich gedämpft, die Lei­stung an R1 und R2 ist gleich­ge­blie­ben. Mecha­nisch ist ein Strom­trans­for­ma­tor sehr ein­fach zu rea­li­sie­ren, zum Bei­spiel indem man eini­ge Win­dun­gen Koaxi­al­ka­bel auf einem Ring­kern auf­wickelt (Rei­sert Balun).

Statt eines Strom­trans­for­ma­tors kann aber auch ein „klas­si­scher“ Span­nungs­trans­for­ma­tor ein­ge­setzt werden:

Symmetrierung mit Spannungsübertrager
Sym­me­trie­rung mit Spannungsübertrager

Das führt letzt­lich zu dem­sel­ben Ergeb­nis, daß die Man­tel­wel­len erheb­lich redu­ziert wer­den. Die­se Bau­art hat den zusätz­li­chen Vor­teil einer Poten­ti­al­tren­nung, dafür aber gege­be­nen­falls den Nach­teil, bei nied­ri­gen Fre­quen­zen einen Kurz­schluß darzustellen.

Mes­sung von Mantelwellen

Man­tel­wel­len las­sen sich durch eine recht ein­fa­che Mes­sung nach­wei­sen und zumin­dest qua­li­ta­tiv ver­glei­chen: man baut einen Strom­meß­tra­fo um das Spei­se­ka­bel her­um. Dazu eig­net sich ein mit eini­gen Win­dun­gen bewickel­ter Ring­kern, der über das Koaxi­al­ka­bel gescho­ben wird. Innen- und Außen­lei­ter des Koax­ka­bels stel­len die Pri­mär­wick­lung eines Trans­for­ma­tors dar, der Ring­kern die Sekun­där­wick­lung. Wenn die Strö­me auf dem Innen­lei­ter und dem Außen­lei­ter des Koax­ka­bels ent­ge­gen­ge­setzt flie­ßen und gleich groß sind, wird in der Meß­spu­le kei­ne Span­nung indu­ziert. Ist einer die­ser Strö­me grö­ßer als der ande­re, dann ist die indu­zier­te Span­nung pro­por­tio­nal zu die­sem über­schüs­si­gen Strom. Man kann die­se Span­nung gleich­rich­ten und mit einem Volt­me­ter nach­wei­sen. Hier eine ein­fa­che Schal­tung zu die­sem Zweck:

Messung von Mantelwellen
Mes­sung von Mantelwellen

An J1 wird die Meß­spu­le ange­schlos­sen, an J2 und J3 das Volt­me­ter. Als Dioden wer­den wegen der nied­ri­ge­ren Durch­bruch­span­nung nor­ma­ler­wei­se Ger­ma­ni­um­di­oden ver­wen­det. Schott­ky­di­oden oder Sili­zi­um­di­oden funk­tio­nie­ren auch, man stellt ja nor­ma­ler­wei­se kei­ne hohen Ansprü­che an die Meßgenauigkeit.

Die­se Meß­schal­tung lässt sich nun auch mit Spi­ce simulieren.

Mantelwellenmessung
Man­tel­wel­len­mes­sung

Um die Rechen­zeit und die Anzahl der Daten­punk­te in Gren­zen zu hal­ten, wur­de nur bis zu 500 ms simu­liert und die zeit­li­che Auf­lö­sung auf 1µs gesetzt. Die bei­den Lei­ter des Koax­ka­bels wur­den will­kür­lich (aber nicht ganz unrea­li­stisch) mit jeweils 50nH ange­setzt (L4 und L5), die Meß­spu­le L3 mit 10µH. Alle Spu­len sind wie­der ide­al gekop­pelt (Spi­ce Direk­ti­ve K2). Da LTSpi­ce kei­ne Ger­ma­ni­um­di­ode im Bau­ka­sten hat, wur­de die­se Simu­la­ti­on mit Schott­ky­di­oden durchgeführt.

Falt­di­pol für das 17-m-Band

Som­mer­zeit ist Anten­nen­bau­zeit. Jetzt müs­sen die Außen­ar­bei­ten statt­fin­den, damit man im Win­ter mög­lichst nicht aus dem Haus muß. Pro­gram­mier­ar­bei­ten und der war­me Löt­kol­ben müs­sen war­ten, bis die Tage wie­der kür­zer wer­den und die Tem­pe­ra­tu­ren fallen.

Mei­ne end­ge­spei­ste Draht­an­ten­ne war von Anfang an ein Pro­vi­so­ri­um, das eigent­lich nur als Pro­of-of-Con­cept gedacht war. Sol­che Pro­vi­so­ri­en hal­ten bekannt­lich lan­ge, aber wenn der Mast dann durch Wit­te­rungs­ein­flüs­se irgend­wann wind­schief wird, ist es Zeit für Ver­bes­se­run­gen. Von einem 20 m lan­gen Draht kann man­cher Stadt­be­woh­ner im Miets­haus nur träu­men, den­noch ist er für die unte­ren Kurz­wel­len­bän­der zu kurz. 40 m Gesamt­län­ge, wie sie für das 80-m-Band benö­tigt wer­den, wären bei mir gera­de so mach­bar, wür­den aller­dings den Zorn der Ehe­frau wecken, denn der freie Blick auf den Don­ners­berg wür­de doch arg verschandelt.

Es muß daher im Prin­zip bei den 20 m blei­ben, ein paar Meter mehr wären wohl ein mög­li­cher Kom­pro­miß. Daher pla­ne ich, einen Falt­di­pol zu bau­en, also einen Draht vom Bal­kon zum Mast, dann eine gewis­se Strecke am Mast abwärts und wie­der zurück zum Bal­kon. Damit die bis­he­ri­ge end­ge­spei­ste Anten­ne einem mit­tig gespei­sten Dipol mit nied­ri­ge­rem Strah­lungs­wi­der­stand etwas näher kommt, soll auf der ent­ge­gen­ge­setz­ten Sei­te ein ähn­lich gestal­te­ter Strah­ler auf­ge­baut wer­den, aller­dings reicht es dort mal gera­de für fünf bis acht Meter. Das ist aber immer noch bes­ser, als der jet­zi­ge Pig­tail von etwa 2m Länge.

Ein klei­ner Anfang

Um zu sehen, ob das Pro­jekt über­haupt prin­zi­pi­ell funk­tio­nie­ren kann, soll ein ähn­li­cher Falt­di­pol mit klei­ne­ren Abmes­sun­gen gebaut wer­den. Die fol­gen­de Zeich­nung zeigt den prin­zi­pi­el­len Aufbau.

Der Dipol soll also sym­me­trisch sein und mit­tig gespeist wer­den. Die Gesamt­län­ge jedes Arms teilt sich in die Strecken Lu/2, Lv und Lo auf. Bei der Auf­tei­lung der Strecken gibt es in mei­nem Fall eini­ge Rand­be­din­gun­gen einzuhalten:

  • Die Län­gen Lu/2 + Lv + Lo defi­nie­ren, wie zu erwar­ten, die Resonanzfrequenz.
  • Da der Dipol kom­plett auf den Bal­kon pas­sen soll, darf die Län­ge Lu nicht grö­ßer als etwa 4,60 m sein.
  • Damit die gan­ze Kon­struk­ti­on hand­lich und sta­bil bleibt, soll Lv etwa 25 cm lang sein.
  • Durch Simu­la­tio­nen mit 4nec2 fin­det man empi­risch, daß das Ver­hält­nis Lo/Lu den Real­teil des Fuß­punkt­wi­der­stan­des defi­niert. Qua­li­ta­tiv: je klei­ner Lo/Lu wird, desto grö­ßer wird der reel­le Fuß­punkt­wi­der­stand. Bei prak­ti­ka­blen Län­gen vari­iert er zwi­schen etwa 35 und 60 Ω.

Der bei der bis­he­ri­gen Draht­an­ten­ne ver­wen­de­te Stahl­draht (eigent­lich ein Wei­de­zaun­draht) ist zwar preis­gün­stig, aber für Anten­nen natür­lich sub­op­ti­mal. Er ist rela­tiv dünn und sein ohm­scher Wider­stand ist zu hoch, um eine effi­zi­en­te Anten­ne zu bau­en. Daher habe ich nun ein paar Euro mehr inve­stiert und ins­ge­samt 100 m hoch­wer­ti­ge Anten­nen­lit­ze besorgt. Sie besteht aus ver­zinn­ten Kup­fer­adern und hat zur bes­se­ren Län­gen­sta­bi­li­tät einen Kev­lar Kern. Hier die tech­ni­schen Daten:

1 x 0,4 mm Kevlar Kern
24 x 0,25 mm verzinntes Kupfer
Kupferabschnitt: 1,2 mm2
Gewicht: 14 Gramm pro Meter
UV-beständige schwarze PE-Isolierung
Gesamtdurchmesser +/-2,5 mm
Zugkraft ca. 50kg

Expe­ri­men­tell wur­de ein Ver­kür­zungs­fak­tor von 0,89 bestimmt. Der ist lei­der nicht in der Spe­zi­fi­ka­ti­on zu fin­den. Mit die­sen Daten kann man nun ver­nünf­ti­ge 4nec2-Simu­la­tio­nen durchführen.

Wegen der oben genann­ten Rand­be­din­gun­gen bie­tet sich eine Kon­struk­ti­on für das 17-m-Band oder das 15-m-Band an. Zunächst war der tat­säch­li­che Ver­kür­zungs­fak­tor unbe­kannt und so wur­de der Dipol mit der bau­lich maxi­mal mög­li­chen Dimen­sio­nie­rung auf­ge­baut: Lu=4,60 m, Lv=0,25 m und Lo=2 m. Das soll­te bei einem maxi­mal mög­li­chen Ver­kür­zungs­fak­tor von 1,0 für das 15-m-Band rei­chen. Tat­säch­lich war der Dipol auf etwa 16,4 MHz reso­nant, wor­aus sich dann der genann­te Ver­kür­zungs­fak­tor von etwa 0,89 errech­ne­te. Durch Kür­zen der Lo-Schen­kel auf 1,59 m wur­de dann eine Reso­nanz knapp unter­halb des 17-m-Ban­des bei etwa 17,9 MHz erreicht. Das wäre durch wei­te­res Kür­zen leicht zu ver­bes­sern, aber letzt­lich ist das Ziel doch das 15-m-Band. Abge­zwackt ist schnell, daher hier zunächst mal die Gegen­über­stel­lung der Simu­la­ti­on mit der tat­säch­li­chen Messung:

17-m-Faltdipol, SWR (simuliert mit 4nec2)
17-m-Falt­di­pol, SWR (simu­liert mit 4nec2)

Der Dipol ist bei knapp 18 MHz reso­nant und das Steh­wel­len­ver­hält­nis liegt bei etwa 1,3.

17-m-Faltdipol, Smithdiagramm (simuliert mit 4nec2)
17-m-Falt­di­pol, Smit­h­dia­gramm (simu­liert mit 4nec2)

Das Smith-Dia­gramm zeigt bei Reso­nanz eine reel­le Impe­danz von etwa 38 Ω. Der schwar­ze Kreis zeigt die Punk­te mit einem Steh­wel­len­ver­hält­nis von 3. Alle Impe­dan­zen inner­halb die­ses Krei­ses kön­nen vom ein­ge­bau­ten Anten­nen­tu­ner des IC7300 ange­passt werden.

17-m-Faltdipol, Fernfeld (simuliert mit 4nec2)
17-m-Falt­di­pol, Fern­feld (simu­liert mit 4nec2)

Das Richt­dia­gramm zeigt die zu erwar­ten­de Cha­rak­te­ri­stik. Bei der Auf­hän­gung im kon­kre­ten Fall in Rich­tung Süd­ost-Nord­west dürf­te also eine bevor­zug­te Strah­lungs­rich­tung nach Süd­ame­ri­ka und Russland/Japan zu erwar­ten sein. Austra­li­en und Nord­ame­ri­ka dürf­ten eher schwie­rig werden.

17-m-Faltdipol, gemessen mit DG8SAQ VNWA
17-m-Falt­di­pol, gemes­sen mit DG8SAQ VNWA

Die tat­säch­li­che Mes­sung mit dem DG8SAQ Netz­werk­ana­ly­sa­tor liegt erstaun­lich nahe an der Simu­la­ti­on. Das liegt einer­seits natür­lich an dem Ver­kür­zungs­fak­tor, der aus der Mes­sung im Ver­gleich zur Simu­la­ti­on so errech­net wur­de, daß die simu­lier­te Reso­nanz­fre­quenz mit der tat­säch­li­chen über­ein­stimmt. Dar­über­hin­aus liegt aber auch der gemes­se­ne reel­le Fuß­punkt­wi­der­stand bei genau den simu­lier­ten 38 Ω. Die blau­en Krei­se sind die SWR=2 und SWR=3 Gren­zen. Zwi­schen 17,22 MHz und 18,35 MHz liegt das SWR also unter 3.

Hier ist die 4nec2-Datei, falls jemand selbst die Simu­la­tio­nen nach­voll­zie­hen will.

Der mecha­ni­sche Aufbau

Damit die Kon­struk­ti­on sta­bil, zuver­läs­sig und wet­ter­fest wird, habe ich zwei Dop­pel­rol­len aus Hart-PVC gefräst, die den Anten­nen­draht hal­ten und führen.

Gefräste Doppelrolle als Antennenhalter
Gefrä­ste Dop­pel­rol­le als Antennenhalter

Die Rol­len bestehen aus drei ver­kleb­ten und ver­schraub­ten Tei­len. Der inne­re Teil wur­de aus 3 mm dicken PVC Plat­ten gefräst, die bei­den äuße­ren wei­ßen Schei­ben sind 2 mm dick. Der Radi­us der inne­ren Schei­be bestimmt den Bie­ge­ra­di­us der Anten­nen­lit­ze. Dafür ist zwar kein Mini­mum spe­zi­fi­ziert, aber die gewähl­ten 50 mm (also 100 mm Durch­mes­ser) schei­nen hin­rei­chend groß zu sein. Die äuße­ren Schei­ben haben einen Durch­mes­ser von 120 mm, so daß rund­um 10 mm Platz sind, um den Anten­nen­draht auf der Rol­le zu hal­ten. Wenn man, wie in die­sem Fall auf dem Bal­kon, an alle Rol­len gut her­an­kommt, um einen Draht wie­der ein­zu­fä­deln, ist das völ­lig aus­rei­chend. Wenn der Draht erst ein­mal gespannt ist, bleibt er auch auf der Rol­le. Für die geplan­te Kon­struk­ti­on der län­ge­ren Anten­ne muß eine Lasche von oben das Her­aus­fal­len des Anten­nen­drah­tes verhindern.

Die Deich­sel ist aus zwei 3 mm dicken PVC-Plat­ten gefräst, die oben an der Öse und zwi­schen den bei­den Rol­len durch ein­ge­kleb­te 12 mm dicke Abstands­hal­ter auf das benö­tig­te Maß gebracht wer­den. Im Foto nicht zu sehen sind die bei­den Unter­leg­schei­ben aus 2 mm PVC auf bei­den Sei­ten jeder Rol­le. Rol­len und Unter­leg­schei­ben sind damit 11 mm dick (2x2mm Unter­leg­schei­ben + 2x2mm Rol­le außen + 1x3mm Rol­le innen) und pas­sen gut zwi­schen die 12-mm-Deich­sel. Als Nabe dient eine 18 mm lan­ge Hül­se, die aus einem 6 mm dicken Mes­sing­rohr abge­schnit­ten wur­de. Jeweils eine 22 mm lan­ge M4-Schrau­be mit Stopp­mut­ter fixiert die Rol­len an der Deich­sel. Die Naben haben einen Abstand von 150 mm, so daß die Dräh­te letzt­lich 250 mm Abstand von­ein­an­der haben.

Abschlie­ßend noch ein paar Fotos der fer­tig instal­lier­ten Antenne:

Aufhängung des Faltdipols am Dach in südöstlicher Richtung
Auf­hän­gung des Falt­di­pols am Dach in süd­öst­li­cher Richtung

Aufhängung des Faltdipols an der nordwestlichen Seite
Auf­hän­gung des Falt­di­pols an der nord­west­li­chen Seite

Mittige Einspeisung über eine Mantelwellensperre. Oben der Spanner für Zäune.
Mit­ti­ge Ein­spei­sung über eine Man­tel­wel­len­sper­re. Oben der Span­ner für Zäune.

Die Dop­pel­rol­len machen einen hin­rei­chend sta­bi­len Ein­druck, um meh­re­re Jah­re im Außen­be­reich dem Wet­ter und der UV-Strah­lung zu trot­zen. Der Span­ner wur­de soweit ange­zo­gen, daß die bis­he­ri­ge Abspan­nung des Anten­nen­ma­stes abge­baut wer­den konn­te und damit durch die­sen Falt­di­pol ersetzt wird. Mal schau­en, wie sich das beim näch­sten Sturm ent­wickelt. Damit bei ruck­ar­ti­ger Bela­stung nichts reißt, wer­de ich noch eine Spann­fe­der neben den Seil­span­ner einbauen.

Spek­trum­ana­ly­sa­tor, Teil 3

Nach­dem ich nun eini­ge Mona­te mit mei­nem neu­en Spek­trum­ana­ly­sa­tor her­um­ge­spielt habe, muß ich nun noch ein paar Ergän­zun­gen und Klar­stel­lun­gen zu den bei­den ersten Tei­len hier und hier hin­zu­fü­gen. In den ersten Mes­sun­gen habe ich z.T. ungün­sti­ge Meß­ein­stel­lun­gen gewählt und bei der Beur­tei­lung des dar­ge­stell­ten Sei­ten­band­rau­schen wahr­schein­lich zu stren­ge Kri­te­ri­en für ein Gerät die­ser Preis­klas­se angelegt.

Die Wahl der Meß­ein­stel­lun­gen ist kri­tisch, was nach­fol­gend am Bei­spiel eini­ger Mes­sun­gen an einem Clapp-Guri­ett Oszil­la­tor gezeigt wer­den soll. Er ist mit einem 18,432 MHz Quarz bestückt und schwingt auf der drit­ten Ober­wel­le bei nomi­nal 55,296 MHz. Alle Mes­sun­gen wur­den mit dem Sig­lent Spek­trum­ana­ly­sa­tor SSA3032X Plus durchgeführt.

Funk­ti­ons­wei­se des Spektrumanalysators

Zunächst muß man sich noch­mal über die Funk­ti­ons­wei­se eines Spek­trum­ana­ly­sa­tors klar wer­den. Es han­delt sich prin­zi­pi­ell um einen Über­la­ge­rungs­emp­fän­ger mit sehr breit­ban­di­gem, mög­lichst emp­find­li­chem, linea­rem und den­noch groß­si­gnal­fe­stem Ein­gang. Das sind Eigen­schaf­ten, die in Kom­bi­na­ti­on nicht leicht zu rea­li­sie­ren sind und Kom­pro­mis­se erfor­dern. Als Über­la­ge­rungs­emp­fän­ger benö­tigt der Spek­trum­ana­ly­sa­tor also einen VFO, der in einem Meß­zy­klus so gere­gelt wird, daß der Emp­fän­ger den gewähl­ten Emp­fangs­be­reich über­streicht. Das Meß­si­gnal am Ein­gang wird dann mit dem VFO-Signal gemischt, gefil­tert, gemes­sen und schließ­lich am Bild­schirm ange­zeigt. Neben dem Fre­quenz­be­reich kön­nen die Fil­ter­pa­ra­me­ter und der Meß­de­tek­tor ein­ge­stellt wer­den. Moder­ne Spek­trum­ana­ly­sa­to­ren wer­ten das ZF-Signal digi­tal mit einer FFT aus und errei­chen daher erheb­lich redu­zier­te Meß­zei­ten. Die prin­zi­pi­el­le Funk­ti­ons­wei­se unter­schei­det sich aber nicht von frü­he­ren rein ana­lo­gen Geräten.

Wahl der Band­brei­te und des Detektors

Es gibt zwei Band­brei­ten­ein­stel­lun­gen, die Reso­lu­ti­on Band­width (RBW) und die Video Band­width (VBW). Die wich­ti­ge­re davon ist die RBW, die die Durch­lass­band­brei­te des ZF-Fil­ters bestimmt. Die VBW mit­telt die detek­tier­ten Signa­le unmit­tel­bar vor der Dar­stel­lung, so daß das dar­ge­stell­te Rau­schen mini­miert wird. Das Video­fil­ter ist im auto­ma­ti­schen Modus an die Ein­stel­lung des ZF-Fil­ters gekop­pelt. In den hier gezeig­ten Mes­sun­gen wird die­ser auto­ma­ti­sche Modus ver­wen­det, VBW ist also immer gleich der RBW.

Der Spek­trum­ana­ly­sa­tor stellt die jeweils gemes­se­nen Signal­pe­gel auf sei­nem Bild­schirm auf der ver­ti­ka­len Ach­se über den auf der hori­zon­ta­len Ach­se ein­ge­stell­ten Fre­quenz­be­reich dar. Dabei ist die Anzahl der Punk­te in bei­den Rich­tun­gen begrenzt. Der SSA3032X Plus hat für die Fre­quenz­dar­stel­lung genau 751 Punk­te reser­viert. Der Rest des 1024 Pixel brei­ten Dis­plays wird zur Dar­stel­lung wei­te­rer Infor­ma­tio­nen benö­tigt. Damit reprä­sen­tiert also jeder ein­zel­ne Punkt einen Fre­quenz­be­reich der ein­ge­stell­ten Spann­brei­te divi­diert durch 751.

Pos Peak Messungen

Hier nun eine erste Bei­spiel­mes­sung des Clapp-Guri­ett Oszil­la­tors bei 55,28 MHz mit einer Spann­brei­te von 2,5 MHz und einer Auf­lö­sungs­band­brei­te von 30 kHz.

Clapp-Guriett Oszillator mit 18.432MHz Quarz, Span: 2.5MHz, RBW=VBW: 30kHz, Detector: PosPeak
Clapp-Guri­ett Oszil­la­tor mit 18.432MHz Quarz, Span: 2.5MHz, RBW=VBW: 30kHz, Detec­tor: PosPeak

Jeder dar­ge­stell­te Meß­wert ent­spricht hier also einem Inter­vall von 2,5 MHz / 751 = 3329 Hz (Span/Pixelanzahl). Der Detek­tor mißt den maxi­ma­len posi­ti­ven Pegel (Pos Peak) inner­halb die­ses Inter­valls und stellt ihn auf der y‑Achse log­arith­misch dar. Die ein­ge­stell­te Band­brei­te von 30 kHz ist deut­lich brei­ter, als das Inter­vall, so daß der Signal­pe­gel von ‑0,79 dBm zuver­läs­sig gemes­sen wird. Mar­ker 2 zeigt den Rausch­pe­gel im Abstand von 500 kHz zum Trä­ger. Rausch­pe­gel wer­den auto­ma­tisch mit der jeweils ein­ge­stell­ten Band­brei­te auf eine Band­brei­te von 1 Hz umge­rech­net. Hier wird ein Rausch­pe­gel von ‑112,14 dBm/Hz ermittelt.

Soll die Meß­kur­ve eine bes­se­re Auf­lö­sung bekom­men, z.B. weil man näher am Signal mes­sen will, dann muß die RBW ver­rin­gert wer­den. Wählt man eine RBW, die deut­lich klei­ner ist als die Brei­te des Inter­valls, dann ste­hen dem Spek­trum­ana­ly­sa­tor meh­re­re Meß­wer­te pro Inter­vall zur Ver­fü­gung, die aber letzt­lich nur durch einen Pixel auf dem Bild­schirm reprä­sen­tiert wer­den kön­nen. Da die Inter­vall­brei­te im vor­lie­gen­den Fall 3329 Hz beträgt, wäre eine RBW von 3 kHz ange­mes­sen. Damit wür­de mit einer Mes­sung prak­tisch das gesam­te dar­ge­stell­te Inter­vall erfasst. Zu Demo­zwecken soll die Band­brei­te aber jetzt auf 300 Hz ein­ge­stellt wer­den, wodurch also etwa elf Mes­sun­gen auf ein Inter­vall fal­len. Die Mes­sung lie­fert nun fol­gen­des Ergebnis:

Clapp-Guriett Oszillator mit 18.432MHz Quarz, Span: 2.5MHz, RBW=VBW: 300Hz, Detector: PosPeak
Clapp-Guri­ett Oszil­la­tor mit 18.432MHz Quarz, Span: 2.5MHz, RBW=VBW: 300Hz, Detec­tor: PosPeak

Der Pegel des Trä­gers ist mit ‑0,91 dBm gleich­ge­blie­ben (Unter­schie­de von ein oder zwei Zehn­tel dBm kann man getrost igno­rie­ren). Wegen der „Pos Peak“ Ein­stel­lung hat sich der Detek­tor von den elf im Inter­vall gemes­se­nen Wer­ten den Maxi­mal­wert aus­ge­sucht und die ande­ren zehn igno­riert. Die­ser Maxi­mal­wert unter­schei­det sich nicht von dem mit zehn­mal grö­ße­rer Band­brei­te gemes­se­nen Maxi­mal­wert aus der vori­gen Messung.

Aller­dings fällt auf, daß der Rausch­pe­gel mit ‑104,21 dBm/Hz nun um etwa 8 dBm gestie­gen ist. Wie kann das sein? Ganz ein­fach, aus den nun elf Meß­wer­ten pro Inter­vall sucht sich der Detek­tor wegen der „Pos Peak“ Ein­stel­lung nun wie­der den jeweils größ­ten aus, wäh­rend bei der vori­gen Mes­sung die­se elf Wer­te mit der einen ein­zi­gen Mes­sung grö­ße­rer Band­brei­te gemit­telt wur­den. Rau­schen ist ein sto­cha­sti­scher Pro­zess und der Pegel wird am besten durch sei­nen Mit­tel­wert reprä­sen­tiert, nicht durch den Maxi­mal­wert. Man kann hier also deut­lich erken­nen, daß eine Rausch­mes­sung mit „Pos Peak“ Ein­stel­lung bei einer Band­brei­te weit unter der Brei­te des Meß­in­ter­valls einen zu hohen Wert liefert.

Avera­ge Video Messungen

Wäh­rend die Mes­sung des Signal­pe­gels auch bei klei­ner RBW mit dem Pos Peak Detek­tor also ein plau­si­bles Ergeb­nis lie­fert, ist die Mes­sung eines Rausch­pe­gels also krass falsch. Daher wie­der­ho­len wir nun die Mes­sun­gen noch­mal mit einem ande­ren Detek­tor, näm­lich Avera­ge Video.

Clapp-Guriett Oszillator mit 18.432MHz Quarz, Span: 2.5MHz, RBW=VBW: 30kHz, Detector: Average Video
Clapp-Guri­ett Oszil­la­tor mit 18.432MHz Quarz, Span: 2.5MHz, RBW=VBW: 30kHz, Detec­tor: Avera­ge Video

Signal- und Rausch­pe­gel stim­men hier im Rah­men der Meß­ge­nau­ig­keit mit der Pos Peak Mes­sung bei glei­cher Auf­lö­sungs­band­brei­te über­ein. Das ist nicht ver­wun­der­lich, denn pro Inter­vall wird eine ein­zi­ge Mes­sung mit einer viel grö­ße­ren Band­brei­te durch­ge­führt. Ob man die­ses eine Ergeb­nis als Maxi­mal­wert oder als Durch­schnitts­wert bezeich­net, ist gleich.

Ein womög­lich uner­war­te­tes Ergeb­nis lie­fert die Mes­sung mit RBW = 300 Hz:

Clapp-Guriett Oszillator mit 18.432MHz Quarz, Span: 2.5MHz, RBW=VBW: 300Hz, Detector: Average Video
Clapp-Guri­ett Oszil­la­tor mit 18.432MHz Quarz, Span: 2.5MHz, RBW=VBW: 300Hz, Detec­tor: Avera­ge Video

Der dar­ge­stell­te Signal­pe­gel ist gera­de­zu abge­stürzt, um fast 60 dB. Das ist eine direk­te Fol­ge der Mit­te­lung über die elf Meß­wer­te. Nur einer die­ser Wer­te hat den tat­säch­li­chen Pegel von etwa ‑0.8 dBm wäh­rend die benach­bar­ten Wer­te zwi­schen ‑60 und ‑80 dBm lie­gen dürf­ten. Dar­aus errech­net der Spek­trum­ana­ly­sa­tor den kor­rek­ten Mit­tel­wert von ‑56,64 dBm, der aber mit dem tat­säch­li­chen Pegel nichts mehr zu tun hat. Die Rausch­mes­sung am Mar­ker 2 zeigt aber trotz der gerin­gen RBW wie­der den oben schon gemes­se­nen plau­si­blen Wert von ‑111 bis ‑112 dBm/Hz. Für Rausch­mes­sun­gen soll­te daher der „Avera­ge Video“ Detek­tor aus­ge­wählt werden.

Nor­mal, Sam­ple und Neg Peak Messungen

Der Voll­stän­dig­keit hal­ber sol­len hier noch die Mes­sun­gen mit ande­ren Detek­tor­ein­stel­lun­gen doku­men­tiert werden:

Der Detek­tor Sam­ple wählt genau einen Meß­wert in der Mit­te des jewei­li­gen Inter­valls aus. Da der Oszil­la­tor im Lau­fe der Mes­sun­gen aus der Mit­te des Dis­plays hin­aus­ge­wan­dert ist, wird hier der Signal­pe­gel bei 300 Hz RBW über­haupt nicht mehr ange­zeigt. Der Nor­mal Detek­tor zeigt abwech­selnd das Maxi­mum und das Mini­mum eines Inter­valls an. Damit lässt sich also schon optisch recht gut die Fluk­tua­ti­on der Meß­wer­te beur­tei­len. Neg Peak zeigt den jewei­li­gen Mini­mal­wert des Inter­valls an.

Emp­foh­le­ne Meßeinstellungen

Soll mit einer ein­zi­gen Mes­sung sowohl der Signal­pe­gel als auch der Rausch­pe­gel kor­rekt ange­zeigt wer­den, darf die ZF-Band­brei­te RBW nicht klei­ner sein, als das Meß­in­ter­vall. Signal- und Rausch­pe­gel wer­den dann weit­ge­hend unab­hän­gig von der Wahl des Detek­tors im Rah­men der Meß­ge­nau­ig­keit kor­rekt ange­zeigt. Beim Nor­mal Detek­tor ist aller­dings zu beach­ten, daß der Mar­ker mal auf dem Mini­mum, mal auf dem Maxi­mum ste­hen kann. Wenn RBW die Brei­te des Meß­in­ter­valls (deut­lich) unter­schrei­tet, dann muß der pas­sen­de Detek­tor aus­ge­wählt wer­den. Zum Mes­sen des Signal­pe­gels emp­fiehlt sich dann Pos Peak, zum Mes­sen des Rausch­pe­gels Avera­ge Video oder Sample.

Mes­sung des Seitenbandrauschens

Kann man denn nun mit einem Spek­trum­ana­ly­sa­tor das Sei­ten­band­rau­schen eines Oszil­la­tors direkt mes­sen oder ist das nicht mög­lich? Kann man wenig­stens eine qua­li­ta­ti­ve Aus­sa­ge tref­fen: schlecht, geht so bzw. gut. Das Sei­ten­band­rau­schen wird übli­cher­wei­se im Abstand von 10 kHz zum Trä­ger ange­ge­ben und auf den Pegel des Trä­gers bezo­gen. Nach dem Bei­trag „Pha­sen­rausch­mes­sun­gen mit dem Spek­trum­ana­ly­sa­tor“ von Wer­ner Schnor­ren­berg, DC4KU, hat ein guter Oszil­la­tor ein Sei­ten­band­rau­schen von ‑70 bis ‑110 dBc/Hz im Abstand von 10 kHz, sehr gute Oszil­la­to­ren auch klei­ner als ‑160 dBc/Hz. Dabei ist zu beach­ten, daß die­ser Bei­trag nun älter als 30 Jah­re ist und sich die Stan­dards inzwi­schen geän­dert haben dürf­ten. ‑100 dBc/Hz müss­te also heut­zu­ta­ge von einem guten Oszil­la­tor schon unter­schrit­ten werden.

Betrach­ten wir noch ein­mal die Mes­sung des oben schon ver­wen­de­ten Clapp-Guri­ett Oszil­la­tors, dies­mal mit RBW = 3 kHz und drei Rausch-Mar­kern im Abstand von 10 kHz, 100 kHz und 1 MHz.

Clapp-Guriett Oszillator mit 18.432MHz Quarz, Span: 2.5MHz, RBW=VBW: 3kHz, Detector: Average Video
Clapp-Guri­ett Oszil­la­tor mit 18.432MHz Quarz, Span: 2.5MHz, RBW=VBW: 3kHz, Detec­tor: Avera­ge Video

Woher kommt die­ser auf­fäl­li­ge Anstieg des Rau­schens in der Nähe des Trä­gers und der Abfall unmit­tel­bar dane­ben? Ist das das Sei­ten­band­rau­schen des gemes­se­nen Oszil­la­tors? Ganz klar nein, es ist das Sei­ten­band­rau­schen des VFOs im Spek­trum­ana­ly­sa­tor. Des­sen Rau­schen wird näm­lich mit dem Trä­ger des zu mes­sen­den Oszil­la­tors in den ZF-Band­paß gemischt. Die beid­sei­ti­gen Peaks wer­den (mut­maß­lich) von der PLL die­ses VFOs erzeugt. Die­ses Ver­hal­ten hat­te ich schon im ersten Teil doku­men­tiert, ohne mir genau über die Ursa­che bewußt zu sein.

Der Pegel des Trä­gers wird hier mit ‑1,8 dBm gemes­sen. Er ist wegen der RBW von 3 kHz bereits leicht redu­ziert. Gehen wir von einem tat­säch­li­chen Pegel von ‑0,8 dBm aus, wie oben gemes­sen, dann zeigt die­se Mes­sung Sei­ten­band­rausch­pe­gel von ‑99,7 dBc/Hz (@10 kHz), ‑95,46 dBc/Hz (@100 kHz) und ‑116,08 dBc/Hz (@1 MHz). Das Daten­blatt des SSA3032X Plus spe­zi­fi­ziert garan­tier­te (typi­sche) Wer­te von 95 (98) dBc/Hz (@10 kHz), 96 (97) dBc/Hz (@100 kHz) und 115 (117) dBc/Hz (@1 MHz). Die tat­säch­li­chen Wer­te sind frei­lich nicht bekannt, aber man kann anneh­men, daß sie nicht deut­lich bes­ser sind, denn sonst hät­te der Her­stel­ler die bes­se­ren Wer­te spe­zi­fi­ziert. Eher sind die spe­zi­fi­zier­ten Wer­te geschönt.

Nach den Standards von 1990, die DC4KU im oben erwähnten Beitrag dokumentiert, erreichen gute Spektrumanalysatoren ein Seitenbandrauschen von besser als -80 dBc/Hz im Abstand von 10 kHz, sehr gute Geräte besser als -110 dBc/Hz. Preist man den technischen Fortschritt der letzten 30 Jahre ein, ist der SSA3032X Plus mit seinen -95 dBc/Hz nach heutigen Standards wohl als "gut" einzuordnen, aber eher nicht als "sehr gut".

Die gemes­se­nen Wer­te lie­gen nahe an den spe­zi­fi­zier­ten typi­schen Wer­ten. Damit kann man den wesent­li­chen Teil des hier gemes­se­nen Sei­ten­band­rau­schens dem VFO des Spek­trum­ana­ly­sa­tors zuord­nen. Abwei­chun­gen von 1 dB wür­de ich als Meß­un­ge­nau­ig­keit defi­nie­ren. Das Sei­ten­band­rau­schen des gemes­se­nen Oszil­la­tors ist also sicher nied­ri­ger, als die hier gemes­se­nen Wer­te, wie nied­rig genau, weiß man nicht. Die oben genann­te Anfor­de­rung von höch­stens ‑100 dBc/Hz im 10 kHz Abstand für einen guten Oszil­la­tor ist also erfüllt. Damit ist man aber an der Meß­gren­ze des Spek­trum­ana­ly­sa­tors ange­kom­men. Für genaue­re Mes­sun­gen benö­tigt man ande­re Meßverfahren.

Die Pro­ble­ma­tik bei die­ser direk­ten Mes­sung ist der Dyna­mik­be­reich des Signals. Ein Spek­trum­ana­ly­sa­tor benö­tigt einen groß­si­gnal­fe­sten Ein­gang mit sehr nied­ri­gem Eigen­rau­schen. Er muß in dem gezeig­ten Fall ein ‑100 dBm/Hz Rausch­si­gnal von einem unmit­tel­bar benach­bar­ten 0 dBm Signal (1 mW) unter­schei­den kön­nen. Das sind zehn Grö­ßen­ord­nun­gen, also ein Fak­tor von zehn Milliarden.

Hier noch­mal die Links zu Teil 1 und Teil 2.

Was zuletzt geschah…

Lei­der gab es lan­ge kei­ne Updates in die­sem Blog. Das liegt im wesent­li­chen dar­an, daß ich mich in den ver­gan­ge­nen Mona­ten in Qt und C++ ein­ge­ar­bei­tet habe. Dar­über nach­fol­gend ein kur­zer Bericht.

Qt ist ein Anwen­dungs­frame­work und GUI-Tool­kit zur platt­form­über­grei­fen­den Ent­wick­lung von Pro­gram­men und gra­fi­schen Benut­zer­ober­flä­chen. Qt setzt das Pro­gram­mie­ren in C++ vor­aus, was ich bis­her immer ver­mei­den konn­te. Pri­vat und auch in mei­nem gesam­ten Berufs­le­ben kam ich stets mit Ansi‑C aus und habe auch immer die jeweils neue­sten Erwei­te­run­gen in C95, C99 und zuletzt C11 mit­ver­folgt und z.T. ger­ne genutzt. Die Limi­tie­rung auf Ansi‑C liegt schlicht­weg dar­an, daß ich im wesent­li­chen hard­ware­na­he embedded Pro­gram­me geschrie­ben habe und für die weni­gen Win­dows-Pro­gram­me auch die Win32-API nicht unbe­dingt C++ verlangt.

Die Win32-API ist natur­ge­mäß nur unter Win­dows lauf­fä­hig, mit Ein­schrän­kun­gen wohl auch mit Wine unter Linux, was ich aber nie gete­stet habe. Ich bin kein Linux-Jün­ger und habe nur die eine oder ande­re vir­tu­el­le Ubun­tu-Maschi­ne lau­fen, damit ich da nicht ganz abge­hängt wer­de. Freund­li­cher­wei­se gibt es Visu­al Stu­dio von Micro­soft für Pri­vat­an­wen­dun­gen kosten­los. Es hat klei­ne nicht rele­van­te Ein­schrän­kun­gen, mit denen man als Hob­by­ist gut leben kann. Den­noch möch­te ich mich nicht all­zu abhän­gig von Win­dows machen, schon gar­nicht, wenn es um mei­ne Hob­by­an­wen­dun­gen geht. Außer­dem wird der von mir immer noch ver­wen­de­te Res­sour­cen-Edi­tor namens Resedit nicht mehr gewar­tet. Die Web­site ist ver­schwun­den. Ein Schwenk auf eine neue und zukunfts­si­che­re Cross-Platt­form Ent­wick­lungs­um­ge­bung war daher überfällig.

Es gibt dafür meh­re­re Lösun­gen, die letzt­end­lich für kosten­sen­si­ble Hob­by­an­wen­dun­gen aber nur auf zwei kon­kur­rie­ren­de Pake­te hin­aus­lau­fen, näm­lich wxWid­gets und Qt. Nach dem Lesen vie­ler Arti­kel im Inter­net habe ich mich für Qt ent­schie­den. Jeder mag per­sön­lich zu einer ande­ren Ent­schei­dung fin­den. Klar ist, daß man für jedes Paket mit einer mehr­wö­chi­gen oder auch mehr­mo­na­ti­gen Ein­ar­bei­tungs­pha­se rech­nen muß.

Für Qt gibt es vie­le You­tube-Vide­os, die mir die Ein­ar­bei­tung sehr erleich­tert haben. Erste Erfol­ge hat man damit im Grun­de in weni­gen Stun­den oder Tagen, aber bis man sinn­vol­le Appli­ka­tio­nen schrei­ben kann, wird man doch meh­re­re Wochen inve­stie­ren müs­sen. Bei mir kam noch die neue Pro­gram­mier­spra­che C++ hin­zu. Sie ist natür­lich aus C ent­stan­den und sehr ähn­lich, aber die objekt­ori­en­tier­te Her­an­ge­hens­wei­se war mir neu und ist mir immer noch etwas myste­ri­ös. Ins­be­son­de­re hade­re ich damit, daß hin­ter den Kulis­sen Din­ge pas­sie­ren, die ich nicht über­blicke. Das schö­ne ist, daß sie funk­tio­nie­ren, aber ich habe oft (noch) kein Gefühl dafür, wel­che Res­sour­cen bezüg­lich CPU-Zeit oder Spei­cher­be­darf eine gewis­se Ope­ra­ti­on benö­tigt. Viel­leicht ist das aber auch eine Krank­heit aus der Beschrän­kung von embedded Syste­men, die man ein­fach über­win­den muß. Auf einem PC hat man von allem genug, CPU-Zeit, Spei­cher und CPU-Ker­ne. Und wenn nicht, dann war­tet man ein­fach auch die näch­ste Pro­zes­sor­ge­ne­ra­ti­on. QStrings sind bei­spiels­wei­se eine sehr schö­ne Sache, die ich ger­ne ver­wen­de. Aber wie sie hin­ter den Kulis­sen funk­tio­nie­ren, ohne daß man expli­zit eine maxi­ma­le Län­ge ange­ben muß, wie z.B. bei char-Arrays in C, ist mir im Moment noch ein Rät­sel. Der Over­head ist sicher­lich nicht gering, aber in einer PC-Umge­bung ist das wohl völ­lig ver­nach­läs­sig­bar. Das sind wahr­schein­lich Refle­xe aus der Embedded-Pro­gram­mie­rung, die man halt ein­fach über­win­den muß.

Zur Doku­men­ta­ti­on mei­nes bis­he­ri­gen Fort­schritts sol­len hier nur zwei Screen­shots eines Kom­mu­ni­ka­ti­ons­pro­gramms gezeigt wer­den, das über einen USB-RS485-Kon­ver­ter mit den an ande­rer Stel­le in die­sem Blog vor­ge­stell­ten Mod­bus-Gerä­ten (Anten­nen­tu­ner und Anten­nen­um­schal­ter) kommuniziert.

Dia­gno­se-Tab des Kommunikationsprogramms

Con­fig-Tab des Kommunikationsprogramms

Qt unter­stützt die Gestal­tung der Benut­zer­ober­flä­che mit dem Qt Crea­tor und stellt die not­wen­di­gen Biblio­the­ken für das Ziel-Betriebs­sy­stem zur Ver­fü­gung. Die­se Biblio­the­ken unter­stüt­zen nicht nur die gra­fi­sche Ein- und Aus­ga­be, son­dern z.B. auch die Kom­mu­ni­ka­ti­on über eine seri­el­le Schnitt­stel­le. Man bin­det sich also nir­gends direkt an das Betriebssystem.

Als Nach­teil emp­fin­de ich im Moment, daß Qt zumin­dest in der Stan­dard­kon­fi­gu­ra­ti­on sei­ne Biblio­the­ken nicht sta­tisch lin­ked. So muß man selbst bei einem klei­nen „Hel­lo World“ Pro­gramm etwa 10 DLLs mit knapp 50 MB Grö­ße mit­lie­fern. Das macht das Hand­ling etwas schwie­rig, gera­de bei klei­nen „Kiki-Pro­gram­men“. Da gibt es bestimmt bes­se­re Lösun­gen, z.B. indem man die DLLs irgend­wo zen­tral spei­chert und mit einer Envi­ron­ment-Varia­blen dar­auf zeigt. Da muß ich noch etwas for­schen, hat aber kei­ne hohe Priorität.

Ich bin noch Anfän­ger bezüg­lich Qt und C++, aber ich kann Qt auf jeden Fall sehr emp­feh­len. Mei­ne zukünf­ti­gen Pro­jek­te wer­den Qt-basiert sein. Die Unter­stüt­zung im Inter­net lässt kei­ne Wün­sche offen.

Anten­nen­tu­ner Ver­si­on 1.2

Nach­dem die erste Ver­si­on des Anten­nen­tu­n­ers (hier und hier) seit einem Jahr sehr zufrie­den­stel­lend läuft, soll­te nun eine neue Ver­si­on mit ver­bes­ser­ten Funk­tio­nen gebaut wer­den. Die erste Ver­si­on ist ein gefrä­ster Pro­to­typ, der jeweils nur sechs Spu­len und Kon­den­sa­to­ren schal­ten kann. Das ist aus­rei­chend, denn eine unge­nü­gen­de Anpas­sung bis zu einem Steh­wel­len­ver­hält­nis von 3 kann der ein­ge­bau­te Tuner im IC-7300 gut kom­pen­sie­ren. Nun soll­te eine mecha­nisch kom­pa­ti­ble Lei­ter­plat­te ent­wickelt wer­den, die auf­grund ihrer pro­fes­sio­nel­len Fer­ti­gung enge­re Lei­ter­bahn­füh­run­gen und somit letzt­lich auch jeweils acht Spu­len und Kon­den­sa­to­ren schal­ten kann. Sie passt damit in das bereits am Anten­nen­mast mon­tier­te alte Gehäuse.

Als Steue­rung wird wie­der das ATMEGA644PA-AU Board (bzw. die gering­fü­gig über­ar­bei­te­te Vari­an­te V1.1) und der dazu pas­sen­de Relais­trei­ber in der Ver­si­on 1.1 ein­ge­setzt. Sie haben sich inzwi­schen bei­de gut bewährt und sie sind recht immun gegen HF-Stö­run­gen. Auf einem oder zwei Bän­dern gibt es bei maxi­ma­ler Aus­gangs­lei­stung Kom­mu­ni­ka­ti­ons­feh­ler, die nach Abschal­ten der HF wie­der ver­schwin­den. Auch Maus und Tasta­tur am PC haben sol­che Aus­set­zer. Das könn­ten Direkt­ein­strah­lun­gen von der nur weni­ge Meter ent­fern­ten Draht­an­ten­ne sein, es könn­te auch an dem man­gel­haf­ten Man­tel­wel­len­fil­ter liegen.

Hier ist der Schalt­plan des Tuners:

Und hier das gesam­te KiCad V6.0 Projekt:

Die Induk­ti­vi­tä­ten und Kapa­zi­tä­ten ver­dop­peln sich mit jeder Schalt­stu­fe (unge­fähr), daher gibt der klein­ste Wert jeweils die Schritt­wei­te an. Für die Kon­den­sa­to­ren wur­de eine Kas­ka­de von 2,5 pF bis 330 pF gewählt, für die Spu­len 80 nH bis 10,24 µH. Wegen der unver­meid­li­chen para­si­tä­ren Kapa­zi­tä­ten und Induk­ti­vi­tä­ten, sind die nied­rig­sten ein­stell­ba­ren Wer­te aber jeweils höher, als die Schritt­wei­te. Die höch­sten ein­stell­ba­ren Impe­dan­zen sind jeweils die Sum­me der Ein­zel­ele­men­te, zuzüg­lich der dann nicht mehr ins Gewicht fal­len­den para­si­tä­ren Impedanzen.

Die Spu­len wur­den alle als kern­lo­se Spu­len gewickelt, die­je­ni­gen mit hohen Induk­ti­vi­tä­ten zwei­la­gig. Dazu waren die hier gemach­ten Erfah­run­gen hilf­reich. Kern­lo­se Spu­len haben gegen­über Spu­len mit Fer­rit­kern gene­rell den Vor­teil höhe­rer Güte und höhe­rer Belast­bar­keit. Man muß sich um die magne­ti­sche Sät­ti­gung kei­ne Gedan­ken machen. Anders als Fer­rit­kern­spu­len haben kern­lo­se Spu­len aber den Nach­teil, daß sie wegen der höhe­ren Win­dungs­zahl und damit höhe­ren para­si­tä­ren Kapa­zi­tä­ten eine nied­ri­ge­re Selbst­re­so­nanz­fre­quenz haben. Gera­de bei den höhe­ren Kurz­wel­len­bän­dern sind daher die gro­ßen Spu­len nicht mehr nutz­bar, nor­ma­ler­wei­se aber auch nicht notwendig.

Der Tuner ist ganz sim­pel auf­ge­baut, nur als jeweils acht kas­ka­dier­te Spu­len und Kon­den­sa­to­ren. Es gibt kei­nen Richt­kopp­ler, mit dem ein auto­ma­ti­scher Abgleich mög­lich wäre. Wider­stands- und Kon­den­sa­tor­kas­ka­de kön­nen unab­hän­gig von­ein­an­der mit der Kom­mu­ni­ka­ti­ons­soft­ware am PC ein­ge­stellt wer­den. Ein wäh­rend des Abgleichs mit­lau­fen­der VNWA zeigt sofort die resul­tie­ren­de Impe­danz an. Liegt die mög­lichst nahe bei 50 Ohm, wer­den die Ein­stel­lun­gen für das jewei­li­ge Band gespei­chert und spä­ter im Funk­be­trieb wie­der gele­sen und ein­ge­stellt. Damit ist es mit einem 20 m lan­gen Anten­nen­draht auf allen Kurz­wel­len­bän­dern, inklu­si­ve der WARC Bän­der und inklu­si­ve der 4 m und 6 m Bän­der gelun­gen, das Steh­wel­len­ver­hält­nis auf unter 3, mei­stens sogar unter 1,5 zu bekom­men. Die ein­zi­ge Aus­nah­me ist das 160 m Band, für das ein 20 m lan­ger Draht ein­fach zu kurz ist. Ein Steh­wel­len­ver­hält­nis von 3 oder weni­ger kann der ein­ge­bau­te Anten­nen­tu­ner im IC-7300 kom­pen­sie­ren. Im soge­nann­ten Emer­gen­cy Mode gelingt sogar eine not­dürf­ti­ge Anpas­sung auf dem 160 m Band. Damit ist immer­hin Betrieb mit der hal­ben Maxi­mal­lei­stung mög­lich, also 50 Watt. Über den Wir­kungs­grad die­ser Anten­ne soll­te man sich frei­lich kei­nen Illu­sio­nen hingeben.

Hier noch ein paar Fotos des fer­tig auf­ge­bau­ten Tuners

Seit ein paar Tagen läuft der Tuner nun im Pro­be­be­trieb und zeigt bis­her kei­ne Auffälligkeiten.

Der Voll­stän­dig­keit hal­ber hier noch der Quell­code für den ATMEGA644:

und der Quell­code für die Host-Kommunikationssoftware:

Für den ATMEGA ver­wen­de ich z.Zt. Micro­chip Stu­dio V 7.0 und für die Host Soft­ware Visu­al Stu­dio 2022. Bei­de Tool­pa­ke­te sind kosten­los von den Web­sites der Anbie­ter (Micro­chip bzw. Micro­soft) herunterzuladen.

Spek­trum­ana­ly­sa­tor, Teil 2

Nach­dem im ersten Teil eini­ge spek­tra­le Mes­sun­gen des Sig­lent SSA3032X Plus im Ver­gleich zum Rigol DSA815-TG gezeigt wur­den, sol­len in die­sem Teil nun Ver­gleichs­mes­sun­gen mit den ein­ge­bau­ten Track­ing­ge­ne­ra­to­ren (TG) durch­ge­führt werden.

Die Funk­ti­on eines Track­ing­ge­ne­ra­tors ist schnell erklärt: er gene­riert ein Signal mit genau der Fre­quenz, die der Spek­trum­ana­ly­sa­tor (SA) zu die­sem Zeit­punkt gera­de mißt. Damit ist sei­ne Funk­ti­on die eines klas­si­schen Wob­bel­sen­ders, nur daß eben der Detek­tor in Form des SA bereits ein­ge­baut ist. Ein SA mit TG gestat­tet damit ohne wei­te­re Hard­ware Trans­mis­si­ons­mes­sun­gen (s21), mit einem exter­nen Richt­kopp­ler aber auch Refle­xi­ons­mes­sun­gen (s11). Anders als mit einem vek­to­ri­el­len Netz­werk­ana­ly­sa­tor (VNA) geht bei­des aber nur ska­lar, nicht vek­to­ri­ell. Pha­sen­ver­schie­bun­gen kann ein SA mit TG also nicht erkennen.

Trans­mis­si­ons­mes­sun­gen

Bei allen Durch­gangs­mes­sun­gen wird zunächst eine Refe­renz­mes­sung durch­ge­führt, indem der TG-Aus­gang and den SA-Ein­gang mit einem mög­lichst kur­zen und hoch­wer­ti­gen Kabel kurz­ge­schlos­sen wird. Die­ses Meß­er­geb­nis wird als Refe­renz gespei­chert und alle wei­te­ren Mes­sun­gen dar­auf bezogen.

Iso­la­ti­ons­mes­sung

Zunächst muß man fest­stel­len, wel­che Dyna­mik man im Meß­be­reich über­haupt erwar­ten kann. Es ist unver­meid­lich, daß ein gerin­ger Teil des TG-Aus­gangs­si­gnals bereits intern in den hoch­emp­find­li­chen Ein­gang des SA leckt. Egal was man anschlie­ßend außen anschließt, die­ses Leck kann man nicht mehr besei­ti­gen. Es bestimmt also den mini­ma­len Pegel, den man mes­sen kann.

Für die Iso­la­ti­ons­mes­sun­gen wer­den bei­de Buch­sen offen gelassen.

Bes­se­re Iso­la­ti­ons­wer­te als die hier gemes­se­nen grob ‑35 bis ‑45 dB beim DSA815 und ‑45 bis ‑55 dB beim SSA3032X Plus wird man also beim Anschluß eines Test­ob­jekts nicht erwar­ten können.

Mes­sung von Kabeldämpfungen

Rea­le Kabel sind bekannt­lich nicht ver­lust­frei, Koaxi­al­ka­bel schon gar­nicht. Daher soll jetzt als ein­fach­ste Übung die Dämp­fung eines 20 m lan­gen RG-58 und eines 25 m lan­gen RG-174 Kabels über der Fre­quenz gemes­sen wer­den. Hier die ver­wen­de­ten Testobjekte:

…und hier die Meß­er­geb­nis­se der Durchgangsmessungen:

Die Mes­sun­gen zei­gen fre­quenz­ab­hän­gi­ge Wel­lig­kei­ten, die auf Feh­ler in der Anpas­sung zurück­zu­füh­ren sind. Sie sind ver­mut­lich auf Abwei­chun­gen des Wel­len­wi­der­stands des Kabels zu den 50 Ohm der Quel­le und des Meß­ein­gangs zurückzuführen.

Die gemes­se­nen Dämp­fun­gen sind im wesent­li­chen kon­si­stent. Klei­ne­re Abwei­chun­gen erge­ben sich, wenn der Mar­ker gera­de auf einem Berg oder Tal der Wel­lig­keit steht. Beim RG-174 Kabel kom­men bei­de Meß­in­stru­men­te bei den hohen Fre­quen­zen an ihre ein­gangs gemes­se­ne Iso­la­ti­ons­gren­ze. Die hier gefun­de­nen Dämp­fungs­wer­te stim­men im Rah­men der Meß­ge­nau­ig­keit mit den publi­zier­ten Daten überein.

Mes­sun­gen pas­si­ver Filter

In der Bastel­ki­ste fan­den sich eini­ge pas­si­ve Fil­ter, die vor vie­len Jah­ren mit dem Ansoft Desi­gner SV ent­wor­fen und auf FR‑4 Lei­ter­plat­ten­ma­te­ri­al gefräst wur­den. Als Bei­spie­le wur­de ein 435 MHz und ein 850 MHz Band­pass-Fil­ter aus­ge­wählt. Das 435 MHz Fil­ter ist ein Strei­fen­lei­tungs­fil­ter und das 850 MHz Fil­ter ist ein LC-Fil­ter, bei dem jedoch die Induk­ti­vi­tä­ten und ein Teil der Kapa­zi­tä­ten als Lei­ter­bahn­ele­men­te aus­ge­führt sind. Hier sind Fotos der ver­wen­de­ten Filter:

Eine Sei­te der Fil­ter ist jeweils eine durch­ge­hen­de Mas­se­flä­che und die ande­re Sei­te stellt die Fil­ter­struk­tur dar. Das Inter­di­gi­tal-Fil­ter besteht nur aus vier Micro­strip-Lei­tun­gen, deren Dimen­sio­nen und Abstand vom Fil­ter-Design­pro­gramm errech­net werden.

Das LC-Fil­ter besteht aus drei kapa­zi­tiv gekop­pel­ten Par­al­lel­schwing­krei­sen. Die run­den Kup­fer­flä­chen sind Kon­den­sa­to­ren mit etwa 7 pF zur gegen­über­lie­gen­den Mas­se­flä­che und die klei­nen etwa 10 mm lan­gen Lei­ter­bah­nen sind dazu par­al­lel­ge­schal­te­te Induk­ti­vi­tä­ten von jeweils etwa 5 nH. Sie sind am ande­ren Ende zur Mas­se­flä­che durch­kon­tak­tiert. Als Kop­pel­kon­den­sa­to­ren sind 0.75 pF Kera­mik­kon­den­sa­to­ren der Grö­ße 0805 ein­ge­setzt. War­um die gan­ze Fil­ter­struk­tur nicht um 180° gedreht ist, damit die Lei­tungs­län­gen kür­zer wer­den, ist mir übri­gens heu­te auch nicht mehr klar.

Die Ansoft Simu­la­ti­on ergibt fol­gen­de Durchgangscharakteristiken:

Bei dem 435 MHz Micro­strip-Fil­ter erkennt man deut­lich deren prin­zi­pi­el­le Eigen­schaf­ten: sie las­sen nicht nur die Grund­wel­le durch, son­dern auch deren Ober­wel­len. Die Schmal­band­mes­sun­gen zei­gen den 10 dB Durch­gangs­be­reich des Fil­ters, der bei etwa 50 MHz Band­brei­te liegt. Es gibt klei­ne Unter­schie­de in den Mes­sun­gen, die man nicht über­be­wer­ten soll­te. Eine erneu­te Mes­sung wird bei jedem der Gerä­te wie­der Abwei­chun­gen zei­gen. Bei­de Schmal­band­mes­sun­gen zei­gen eine gute Über­ein­stim­mung der Durch­lass­kur­ve mit der Simu­la­ti­on. Auch die Mit­ten­fre­quenz stimmt recht gut. Die Dämp­fung des rea­len Fil­ters ist gering­fü­gig höher als simuliert.

Das 850 MHz LC-Fil­ter hat dage­gen nur einen ein­zi­gen aus­ge­präg­ten Durch­lass­be­reich, näm­lich um 800 MHz her­um. Er liegt damit also etwa 50 MHz unter dem simu­lier­ten Durch­lass­be­reich. Das ist sicher­lich auf Unge­nau­ig­kei­ten beim Frä­sen der Lei­ter­plat­te oder Abwei­chun­gen von der tat­säch­li­chen Dielek­tri­zi­täts­kon­stan­te zurück­zu­füh­ren und spielt hier beim Ver­gleich der bei­den Spek­trum­ana­ly­sa­to­ren kei­ne Rol­le. Bei­de Gerä­te sehen die Dämp­fung im Durch­lass­be­reich über­ein­stim­mend bei etwas über 7 dB und die 3 dB Band­brei­te bei etwa 60 MHz.

23 cm LNA mit MMIC

Zum Abschluß der Trans­mis­si­ons­mes­sun­gen soll noch ein akti­ver Vor­ver­stär­ker gezeigt wer­den, ein LNA mit einem „Mono­li­thic Micro­wa­ve IC“, MMIC. Der hier ein­ge­setz­te Typ ist ein MGA-62563 von Ava­go. Er soll laut Daten­blatt 17 dB Gewinn im 23 cm Band erzie­len. Auch hier ist wie­der ein Micro­strip-Fil­ter vor­ge­schal­tet, das eini­ge dB Ver­lust erzeugt, so daß am Ende ein Gewinn von etwa 10 dB zu erwar­ten ist. Hier zwei Fotos des Prototypen:

Die Ansoft Simu­la­ti­on lässt fol­gen­de Durch­gangs­cha­rak­te­ri­stik erwarten:

23 cm LNA mit MGA-62563, simulierte Durchgangscharakteristik
23 cm LNA mit MGA-62563, simu­lier­te Durchgangscharakteristik

Tat­säch­lich gemes­sen wur­de fol­gen­de Charakteristik:

Bei­de Instru­men­te zei­gen eine Ver­stär­kung von knapp 11 dB im 23 cm Band. Unter Berück­sich­ti­gung der Ver­lu­ste des Ein­gangs­fil­ters deckt sich das mit der laut Daten­blatt zu erwar­ten­den Ver­stär­kung von 17 dB. Die 10 dB Band­brei­te beträgt über­ein­stim­mend etwa 270 MHz. Wegen des erwei­ter­ten Fre­quenz­be­reichs sieht der Sig­lent SSA3032X-Plus auch den Durch­lass­be­reich der ersten Ober­wel­le bei 2.6 GHz. Auch für die­sen Bereich wur­de eine Schmal­band­mes­sung durch­ge­führt, die immer­hin noch eine Dämp­fung um 10 dB zeigt. Auch hier deu­tet die Wel­lig­keit im Durch­lass­be­reich wie­der auf Abwei­chun­gen der Anpas­sung hin.

Refle­xi­ons­mes­sun­gen

Mit Hil­fe eines exter­nen Refle­xi­ons­meß­kop­fes kann man mit einem Track­ing­ge­ne­ra­tor auch Ein­port-Mes­sun­gen, z.B. an Anten­nen durch­füh­ren. Der Track­ing­ge­ne­ra­tor speist dabei den Ein­gang des Meß­kop­fes und das Meß­ob­jekt wird an den Aus­gang ange­schlos­sen. Der Spek­trum­ana­ly­sa­tor mißt die reflek­tier­te Lei­stung. Das ent­spricht einer s11-Mes­sung, auch hier aller­dings wie­der nur skalar.

Vor der eigent­li­chen Mes­sung muß eine Refe­renz­mes­sung mit offe­nem oder kurz­ge­schlos­se­nem Aus­gang durch­ge­führt wer­den. Die Meß­kur­ve wird als Refe­renz­si­gnal gespei­chert und alle wei­te­ren Mes­sun­gen bezie­hen sich dann auf die­se Referenz.

Hier zunächst Fotos des Meß­kop­fes und des Meßobjekts:

Baofeng Wen­del­an­ten­ne

Die Spe­zi­fi­ka­ti­on der Meß­kop­fes ist auf 0,1 .. 500 MHz begrenzt, daher bie­tet sich die Mes­sung einer Wen­del­an­ten­ne an. Sie wird im Zim­mer mit einem klei­nen Schraub­stock fixiert, damit die Mes­sun­gen halb­wegs repro­du­zier­bar sind. Das funk­tio­nier lei­der nur annä­hernd, denn die Bewe­gung einer Per­son im Raum oder schon eine Hand­be­we­gung führt zu Ände­run­gen am Meß­er­geb­nis. Daher soll­ten die fol­gen­den Mes­sun­gen mit der berühm­ten Pri­se Salz betrach­tet werden.

Die Meß­er­geb­nis­se:

Die Mes­sun­gen zei­gen jeweils die fre­quenz­ab­hän­gig reflek­tier­te Ener­gie an. Bei den Fre­quen­zen, an denen die Anten­ne Ener­gie abstrahlt, erreicht die reflek­tier­te Ener­gie ein Mini­mum. Ist die reflek­tier­te Ener­gie hoch, kann sie nicht abge­strahlt wor­den sein. Bei die­sen Fre­quen­zen ist die Anten­ne also ziem­lich wirkungslos.

Auf den Breit­band­mes­sun­gen erkennt man Reso­nan­zen bei etwa 150 MHz, 380 MHz und 420 MHz. Bei den wei­te­ren Mes­sun­gen sind jeweils noch­mal die Berei­che um 150 MHz und um 400 MHz her­aus­ge­zoomt. Bei 150 MHz ist eine Rück­fluß­dämp­fung zwi­schen 8 und 11 dB zu sehen. Die Unter­schie­de sol­len aus den oben genann­ten Grün­den nicht bewer­tet wer­den. Eine Rück­fluß­dämp­fung von 10 dB bedeu­tet, daß von der ein­ge­spei­sten Lei­stung 10% zurück­flie­ßen, also 90% abge­strahlt wur­den. Das ist nicht ganz schlecht. Bei 380 und 420 MHz mes­sen bei­de Gerä­te eine Rück­fluß­dämp­fung von mehr als 30 dB, es wird also 99,9% der ein­ge­spei­sten Lei­stung abge­strahlt. Das ist gut.

Bei Refle­xi­ons­mes­sun­gen ist es ganz prak­tisch, wenn der SA nicht nur posi­ti­ve, son­dern auch nega­ti­ve Peaks fin­den und in der Tabel­le dar­stel­len kann. Im Gegen­satz zum DSA815-TG kann der SSA3032X-Plus das.

Zusam­men­fas­sung

Bei­de Spek­trum­ana­ly­sa­to­ren haben einen ein­ge­bau­ten Track­ing­ge­ne­ra­tor, der jeweils in der Stan­dard­aus­füh­rung bereits ohne sepa­ra­te Lizenz frei­ge­schal­tet ist. Er ist ein sehr nütz­li­ches Werk­zeug, das bis zu einem gewis­sen Gra­de einen vek­to­ri­el­len Netz­werk­ana­ly­sa­tor erset­zen kann.

Die Iso­la­ti­on des Track­ing­ge­ne­ra­tors ist beim SSA3032X-Plus etwa 10 dB bes­ser als beim DSA815-TG. Das gestat­tet genaue­re Mes­sun­gen im Sperr­be­reich von Fil­tern. Der grö­ße­re Bild­schirm des Sig­lent erlaubt es, mehr Infor­ma­ti­on dar­zu­stel­len, ohne zu gro­ße Abstri­che bei der Anzei­ge der Meß­kur­ve zu machen.

Der SSA3032X-Plus ist bei den Mes­sun­gen gene­rell deut­lich schnel­ler, als der DSA815 und die Bedie­nung vom PC über das Web-Inter­face ist ein­fach Stand der Tech­nik. Mit einem Klick wird ein Screen­shot direkt auf die Fest­plat­te gespei­chert, wo man beim DSA815 erst umständ­lich mit einem USB-Stick han­tie­ren muß. Dabei dau­ert das Abspei­chern eines klei­nen PNG-Files dann auch noch eine gefühl­te Ewig­keit. An der Bedie­nung merkt man die zehn Jah­re Entwicklungsfortschritt.

Daß der SSA3032X-Plus im Gegen­satz zum DSA815-TG einen deut­lich erwei­ter­ten Fre­quenz­be­reich hat, soll hier nicht bewer­tet wer­den. Es gibt zu höhe­ren Kosten auch von Rigol eine 3.2 GHz Vari­an­te, den DSA832E-TG, und von Sig­lent eine preis­gün­sti­ge­re 1,5 GHz Vari­an­te, den SSA3015X Plus. Die gerin­ge­re RBW und das nied­ri­ge­re Pha­sen­rau­schen des SSA3032X-Plus kön­nen die hier gezeig­ten Mes­sun­gen mit dem Track­ing­ge­ne­ra­tor nicht aus­nut­zen. Dazu wären wei­te­re Schmal­band­mes­sun­gen, z.B. von Quar­zen, viel­leicht ganz hilf­reich. Für sol­che Mes­sun­gen ver­wen­de ich aller­dings den VNA und pla­ne auch nicht, das zukünf­tig mit dem Spek­trum­ana­ly­sa­tor zu machen.

Hier die Links zu Teil 1 und Teil 3.

Ein neu­er Spek­trum­ana­ly­sa­tor muß her!

Vor­über­le­gun­gen

Die Histo­rie

Vor knapp zehn Jah­ren habe ich mir mei­nen ersten Spek­trum­ana­ly­sa­tor (SA) gekauft, einen DSA815-TG der Fir­ma Rigol. Es ist ein für Ama­teur­zwecke recht brauch­ba­res Gerät, das damals knapp 1500 Euro geko­stet hat und heu­te immer noch für gut 1000 Euro ver­füg­bar ist. Er hat aller­dings sei­ne Schwä­chen. Die klein­ste Auf­lö­sungs­band­brei­te (RBW) war sei­ner­zeit 100 Hz, konn­te durch einen Soft­ware­up­date aber auf 10 Hz redu­ziert wer­den. Das ist gar­nicht so schlecht, damit kann man arbei­ten. Als stö­rend erweist sich aber das rela­tiv hohe Pha­sen­rau­schen ins­be­son­de­re beim Mes­sen von Oszil­la­to­ren. Das Daten­blatt gibt für einen Abstand von 10 kHz einen Wert <-80dBc/Hz an. Es wird schlech­ter, je näher man an den Trä­ger kommt. Das ist, wenn über­haupt, nicht viel bes­ser als das Pha­sen­rau­schen eines selbst­ge­bau­ten Oszil­la­tors. Den kann man daher nicht qua­li­fi­ziert mes­sen, denn man kann das Pha­sen­rau­schen des Oszil­la­tors nicht von dem des SA unterscheiden.

Ein wei­te­rer klei­ner Nach­teil ist die Maxi­mal­fre­quenz von 1,5 GHz. Das ist natür­lich für alle Kurz­wel­len­bän­der inklu­si­ve 2 m und 70 cm völ­lig aus­rei­chend. Auf den ersten Blick reicht es auch für 23 cm, aber es kann ein Nach­teil sein, daß man da nicht ein­mal die zwei­te Ober­wel­le geschwei­ge denn die oft wich­ti­ge­re drit­te Ober­wel­le beob­ach­ten kann. Der Track­ing­ge­ne­ra­tor ist ein hilf­rei­ches Werk­zeug, um s21-Para­me­ter und mit einem exter­nen Richt­kopp­ler auch s11-Para­me­ter zu mes­sen, wenn auch bei­de nur ska­lar und nicht vek­to­ri­ell. Will man bei­spiels­wei­se ein Band­pass­fil­ter für das 23 cm Band mes­sen, dann ist es sehr hilf­reich, deut­lich über die Band­gren­zen hin­aus­zu­ge­hen und nicht gleich am Band­ende schon blind zu sein.

Der heu­ti­ge Stand der Technik

Kurz und gut, ich brau­che einen neu­en Spek­trum­ana­ly­sa­tor! Für Ama­teur­zwecke und Ama­teur­bud­gets kom­men nur Gerä­te chi­ne­si­scher Pro­ve­ni­enz in Fra­ge, dar­un­ter beson­ders die von Rigol und Sig­lent. Bei bei­den Her­stel­lern kann man aus einem brei­ten Preis- und Lei­stungs­spek­trum aus­wäh­len. Die erste Fra­ge, die jeder für sich sel­ber klä­ren muß, ist die, ob ein vek­to­ri­el­ler Netz­werk­ana­ly­sa­tor (VNA) ein­ge­baut sein soll. Einen Track­ing­ge­ne­ra­tor haben die mei­sten Gerä­te sowie­so ein­ge­baut und auch frei­ge­schal­tet. Da ist es zum VNA nicht mehr weit, aber ob der Auf­preis gerecht­fer­tigt ist, muß jeder sel­ber entscheiden.

Da ich bereits einen bis 1,3 GHz gut funk­tio­nie­ren­den VNA (von DG8SAQ) habe und mich die tech­ni­schen Daten der SA mit VNA nicht wirk­lich über­zeugt haben, habe ich mich auch wegen des Auf­prei­ses von etwa 600 Euro gegen den eige­bau­ten VNA ent­schie­den. Für etwa 660 Euro gibt es den LibreV­NA, der immer­hin bis 6 GHz nutz­bar ist. Letzt­lich habe ich mich daher für den Sig­lent SSA3032X Plus ohne ein­ge­bau­ten VNA ent­schie­den, der gera­de so in das ver­füg­ba­re Bud­get gepasst und mei­ne Anfor­de­run­gen erfüllt hat.

Daves Vor­ar­beit

EEV­blog-Dave hat in einem sei­ner sehens­wer­ten und unnach­ahm­li­chen Vide­os den Sig­lent SSA3021X mit dem Rigol DSA815 (Video #891) ver­gli­chen und in einem wei­te­ren Video (#892) auch den SSA3021X auf­ge­schraubt. Der Sig­lent SSA3021X ist funk­tio­nal weit­ge­hend iden­tisch mit dem SSA3032X Plus. Er ist aller­dings auf 2.1 GHz limi­tiert, hat kein Web­in­ter­face und kei­nen Touchscreen.

Ver­gleichs­mes­sun­gen des SSA3032X Plus gegen­über dem DSA815-TG

In die­sem Bei­trag wer­de ich eini­ge Ver­gleichs­mes­sun­gen der bei­den genann­ten Gerä­te durch­füh­ren und die jewei­li­gen Meß­er­geb­nis­se per Screen­shot dar­stel­len. Als Meß­ob­jek­te wur­de der Ama­teur­funk­trans­cei­ver IC-7300 und ver­schie­de­ne Test­schal­tun­gen ver­wen­det, die sich noch in der Bastel­ki­ste fan­den. Letz­te­re erhe­ben kei­ner­lei Anspruch auf tech­ni­sche Mei­ster­lei­stun­gen. Ganz im Gegen­teil, es sind zum Teil gefrä­ste Pro­to­ty­pen mit unter­durch­schnitt­li­cher Per­for­mance. Gera­de des­halb eig­nen sie sich aber gut, um als Ver­gleichs­ob­jek­te zu dienen.

Damit die­ser Arti­kel nicht über­la­den wird, ver­schie­be ich die ursprüng­lich geplan­ten Refle­xi­ons- und Trans­mis­si­ons­mes­sun­gen mit dem jeweils ein­ge­bau­ten Track­ing­ge­ne­ra­tor auf einen zwei­ten Teil. Hier wer­den also nur Spek­tren gemessen.

Rausch­pe­gel bei offe­nem Eingang

Genau wie Dave in sei­nem Video, schlie­ße ich erst mal gar­nichts an. Hier ist also das dar­ge­stell­te Rau­schen bei offe­nem Ein­gang, jeweils für RBW=VBW=1MHz (gelb), 100 kHz (rot) und 10 kHz (blau).

DS815-TG, Quelle: keine, Center: 750 MHz, Span: 1500 MHz, RBW=VBW: 1000/100/10 kHz, Attn: 0dB, PA ausgeschaltet
DS815-TG, Quel­le: kei­ne, Cen­ter: 750 MHz, Span: 1500 MHz, RBW=VBW: 1000÷100÷10 kHz, Attn: 0dB, PA ausgeschaltet
SSA3032X-Plus, Quelle: keine, Center: 750 MHz, Span: 1500 MHz, RBW=VBW: 1000/100/10 kHz, Attn: 0dB, PA ausgeschaltet
SSA3032X-Plus, Quel­le: kei­ne, Cen­ter: 750 MHz, Span: 1500 MHz, RBW=VBW: 1000÷100÷10 kHz, Attn: 0dB, PA ausgeschaltet

Dave spricht beim Rigol von ‑65 dBm, ‑75 dBm und ‑85 dBm und beim Sig­lent von ‑85 dBm, ‑90 dBm und ‑100 dBm (@ RBW=1 MHz, 100 kHz und 10 kHz), zumin­dest am Anfang des jewei­li­gen Fre­quenz­be­rei­ches. Das kann ich für den Rigol bestä­ti­gen, aber nicht ganz für den Sig­lent. Da mes­se ich jeweils etwa 2 bis 5 dB schlech­te­re Wer­te. Wie auch Dave schon fest­stellt, ist der Fre­quenz­gang beim Sig­lent glat­ter als beim Rigol.

Die näch­sten bei­den Screen­shots zei­gen die­sel­ben Mes­sun­gen mit ein­ge­schal­te­tem Vor­ver­stär­ker (pre­am­pli­fier, PA).

DS815-TG, Quelle: keine, Center: 750 MHz, Span: 1500 MHz, RBW=VBW: 1000/100/10 kHz, Attn: 0dB, PA eingeschaltet
DS815-TG, Quel­le: kei­ne, Cen­ter: 750 MHz, Span: 1500 MHz, RBW=VBW: 1000÷100÷10 kHz, Attn: 0dB, PA eingeschaltet
SSA3032X-Plus, Quelle: keine, Center: 750 MHz, Span: 1500 MHz, RBW=VBW: 1000/100/10 kHz, Attn: 0dB, PA eingeschaltet
SSA3032X-Plus, Quel­le: kei­ne, Cen­ter: 750 MHz, Span: 1500 MHz, RBW=VBW: 1000÷100÷10 kHz, Attn: 0dB, PA eingeschaltet

Hier bestä­ti­gen sich die von Dave gemes­se­nen Wer­te zumin­dest annä­hernd: ‑90 dBm, ‑100 dBm und ‑110 dBm beim Rigol und ‑102 dBm, ‑108 dBm und ‑120 dBm beim Sig­lent. Bei den ‑120 dBm muß ich aber schon bei­de Augen zudrücken.

Den­noch ist der Sig­lent sowohl mit als auch ohne PA 10 bis 15 dB bes­ser. Und nicht ver­ges­sen, Dave hat den SSA3021X gemes­sen und nicht den SSA3032X-Plus.

Spek­trum einer DDS mit AD9834

Ein klei­ner Ver­suchs­auf­bau mit einer AD9834 DDS Schal­tung (10-bit DAC) wird mit einem 75 MHz Quarz­os­zil­la­tor außer­halb sei­ner Spe­zi­fi­ka­ti­on betrie­ben, die für die gewähl­te Vari­an­te AD9834BRU eigent­lich nur 50 MHz zulässt. Die Aus­gangs­fre­quenz ist auf 10,7 MHz ein­ge­stellt. Das Tief­pass­fil­ter am Aus­gang ist nicht opti­miert, wie die Breit­band Spek­tral­ana­ly­se zeigt. Bei­de Gerä­te kön­nen eine Tabel­le der gemes­se­nen Peaks anzeigen:

DS815-TG, Quelle: AD9834, Center: 50 MHz, Span: 100 MHz, RBW: 10 kHz, VBW: 10 kHz mit Peak Tabelle
DS815-TG, Quel­le: AD9834, Cen­ter: 50 MHz, Span: 100 MHz, RBW: 10 kHz, VBW: 10 kHz mit Peak Tabelle

SSA3032X-Plus, Quelle: AD9834, Center: 50 MHz, Span: 100 MHz, RBW: 10 kHz, VBW: 10 kHz mit Peak Tabelle
SSA3032X-Plus, Quel­le: AD9834, Cen­ter: 50 MHz, Span: 100 MHz, RBW: 10 kHz, VBW: 10 kHz mit Peak Tabelle

Man erkennt die DDS-Takt­fre­quenz von 75 MHz, die ein­ge­stell­te Aus­gangs­fre­quenz von 10,7 MHz, die jewei­li­gen Spie­gel­fre­quen­zen bei 75 MHz +/- 10,7 MHz.

Nach­fol­gend soll nur das Spek­trum um 10,7 MHz mit ver­schie­de­nen Band- und Spann­brei­ten unter­sucht wer­den. Begin­nen wir bei einer Spann­brei­te von 1 MHz und einer RBW=VBW von 30 Hz:

DS815-TG, Quelle: AD9834, Center: 10.7 MHz, Span: 1 MHz, RBW: 30 Hz, VBW: 30 Hz
DS815-TG, Quel­le: AD9834, Cen­ter: 10.7 MHz, Span: 1 MHz, RBW: 30 Hz, VBW: 30 Hz

SSA3032X-Plus, Quelle: AD9834, Center: 10.7 MHz, Span: 1 MHz, RBW: 30 Hz, VBW: 30 Hz
SSA3032X-Plus, Quel­le: AD9834, Cen­ter: 10.7 MHz, Span: 1 MHz, RBW: 30 Hz, VBW: 30 Hz

Bei­de Gerä­te sehen den Trä­ger bei 10,7 MHz und etwa ‑9,5 dBm. Die gerin­gen Abwei­chun­gen sind irrele­vant und sie ändern sich bei jedem der Gerä­te mit jedem Durch­gang. Bei­de Gerä­te sehen auch die Spu­ren bei +/- 400 kHz bei knapp ‑90 dBm.

Eine wei­te­re Spur bei 10,6 MHz sieht aber nur der Rigol deut­lich, beim Sig­lent ver­schwin­det sie im Rau­schen. Außer­dem steigt das Rau­schen beim Sig­lent stär­ker an, als beim Rigol, je näher man dem Trä­ger kommt. Bei ‑80 dBm erreicht es ein Maxi­mum und sinkt in unmit­tel­ba­rer Nähe zum Trä­ger wie­der auf etwa ‑90 dBm ab. Die­ses Ver­hal­ten wur­de vom Her­stel­ler Sig­lent auf Nach­fra­ge bestä­tigt. Es ist auch nicht auf die­se Ein­stel­lun­gen beschränkt, son­dern es tritt tech­no­lo­gie­be­dingt auch bei ande­ren Fre­quen­zen auf. Das ist ein ech­ter Wehr­muts­trop­fen und ich war kurz davor, das Gerät zurück­zu­ge­ben. Daß ich es nicht getan habe, liegt im wesent­li­chen dar­an, daß ich für ein ähn­lich aus­ge­stat­te­tes Gerät von Rigol noch­mal 1k€ hät­te drauf­le­gen müs­sen. Man wird also wohl oder übel in die­ser Preis­klas­se doch ein paar Abstri­che machen müssen.

Der Rigol zeigt das Ver­hal­ten, das man erwar­tet: das Pha­sen­rau­schen steigt mit der Nähe zum Träger.

Hier noch die Sig­lent-Mes­sung mit einer Peak-Tabelle:

SSA3032X-Plus, Quelle: AD9834, Center: 10.7 MHz, Span: 1 MHz, RBW: 30 Hz, VBW: 30 Hz mit Peak Tabelle
SSA3032X-Plus, Quel­le: AD9834, Cen­ter: 10.7 MHz, Span: 1 MHz, RBW: 30 Hz, VBW: 30 Hz mit Peak Tabelle

Hier die Mes­sun­gen mit 100 kHz Spann­brei­te und RBW=100 Hz:

DS815-TG, Quelle: AD9834, Center: 10.7 MHz, Span: 100 kHz, RBW: 100 Hz, VBW: 100 Hz
DS815-TG, Quel­le: AD9834, Cen­ter: 10.7 MHz, Span: 100 kHz, RBW: 100 Hz, VBW: 100 Hz

SSA3032X-Plus, Quelle: AD9834, Center: 10.7 MHz, Span: 100 kHz, RBW: 100 Hz, VBW: 100 Hz
SSA3032X-Plus, Quel­le: AD9834, Cen­ter: 10.7 MHz, Span: 100 kHz, RBW: 100 Hz, VBW: 100 Hz

Es ist auch jeweils der Rausch­pe­gel im 10 kHz Abstand dar­ge­stellt. Er ist in bei­den Fäl­len kon­si­stent zur Breit­band­mes­sung, unter­schei­det sich aber um mehr als 12 dB. Der Unter­schied ist mit dem deut­lich schlech­te­ren Pha­sen­rau­schen des Rigol zu erklä­ren. Er ist mit <-80 dBm/Hz im 10 kHz Abstand spe­zi­fi­ziert, was bei der ein­ge­stell­ten RBW von 100 Hz 20 dB mehr, also ‑60 dBm erwar­ten lässt. Anders aus­ge­drückt: ein guter Teil des beim Rigol gezeig­ten Rau­schens kommt von sei­nem ein­ge­bau­ten Oszil­la­tor. Hier wür­de ich also dem Sig­lent mehr ver­trau­en, wenn­gleich der Abfall der Rau­schens in Trä­ger­nä­he auch in die­ser Auf­lö­sung noch deut­lich zu sehen ist.

Nach­fol­gend noch ohne Kom­men­ta­re wei­te­re Schmal­band­mes­sun­gen mit Spann­brei­ten von 10 kHz:

DS815-TG, Quelle: AD9834, Center: 10.7 MHz, Span: 10 kHz, RBW: 10 Hz, VBW: 10 Hz
DS815-TG, Quel­le: AD9834, Cen­ter: 10.7 MHz, Span: 10 kHz, RBW: 10 Hz, VBW: 10 Hz

SSA3032X-Plus, Quelle: AD9834, Center: 10.7 MHz, Span: 10 kHz, RBW: 10 Hz, VBW: 10 Hz
SSA3032X-Plus, Quel­le: AD9834, Cen­ter: 10.7 MHz, Span: 10 kHz, RBW: 10 Hz, VBW: 10 Hz

…und 1 kHz:

DS815-TG, Quelle: AD9834, Center: 10.7 MHz, Span: 1 kHz, RBW: 10 Hz, VBW: 1 Hz
DS815-TG, Quel­le: AD9834, Cen­ter: 10.7 MHz, Span: 1 kHz, RBW: 10 Hz, VBW: 1 Hz

SSA3032X-Plus, Quelle: AD9834, Center: 10.7 MHz, Span: 1 kHz, RBW: 10 Hz, VBW: 1 Hz
SSA3032X-Plus, Quel­le: AD9834, Cen­ter: 10.7 MHz, Span: 1 kHz, RBW: 10 Hz, VBW: 1 Hz

Bei die­sen sehr schmal­ban­di­gen Mes­sun­gen kommt das gerin­ge Pha­sen­rau­schen des Sig­lent voll zur Gel­tung. Statt ‑61 dBc beim Rigol sehen wir hier knapp ‑84 dBc im Abstand von 100 Hz zum Trä­ger. Außer­dem ist zu beach­ten, daß der Rigol bei die­sen Ein­stel­lun­gen 100 Sekun­den pro Sweep benö­tigt, der Sig­lent auf­grund der FFT aber nur 0,338 Sekun­den. Da macht das Mes­sen Spaß! Auch aus die­sem Grund woll­te ich das Gerät dann doch nicht wie­der hergeben.

Dar­über­hin­aus gestat­tet der Sig­lent Mes­sun­gen mit RBW=VBW=1Hz und mit einer Spann­brei­te von 100 Hz erhält man dann fol­gen­des hoch­auf­ge­lö­ste Meßergebnis:

SSA3032X-Plus, Quelle: AD9834, Center: 10.7 MHz, Span: 100 Hz, RBW: 1 Hz, VBW: 1 Hz, Average
SSA3032X-Plus, Quel­le: AD9834, Cen­ter: 10.7 MHz, Span: 100 Hz, RBW: 1 Hz, VBW: 1 Hz, Average

Nach die­ser Mes­sung ist das Pha­sen­rau­schen im Abstand von 10 Hz also ‑84 dBc. 

Mes­sun­gen des Sen­de­si­gnals eines ICOM IC-7300 Transceivers

Um auch die Meß­er­geb­nis­se eines hoch­wer­ti­gen Signals zu zei­gen, habe ich das Aus­gangs­si­gnal eines IC-7300 Trans­cei­vers von ICOM gemes­sen. Er wur­de bei 10,125 MHz auf nied­rig­ste Sen­de­lei­stung 1% ein­ge­stellt, was etwa 1 Watt, also 30 dBm ent­spre­chen soll­te. Der Spek­trum­ana­ly­sa­tor wur­de über einen 30 dB Abschwä­cher und einen wei­te­ren 10 dB Abschwä­cher ange­schlos­sen, so daß am Ein­gang etwa ‑10 dBm anlie­gen. Alle Mes­sun­gen sind in der Betriebs­art AM durch­ge­führt wor­den, wobei optio­nal ein 2 kHz Sinu­ssi­gnal an den Audio­ein­gang ange­legt wur­de. Es wird vom PC gespeist, des­sen Audio­pe­gel auf 15% oder 71% ein­ge­stellt wur­de. Das sind will­kür­li­che und rela­ti­ve Pegel, die kei­ne Rück­schlüs­se auf den tat­säch­li­chen abso­lu­ten Signal­pe­gel zulassen.

Der unmo­du­lier­te Trä­ger wird mit etwa ‑8 dBm ange­zeigt, was also +32 dBm Ein­gangs­pe­gel vor den Abschwä­chern ent­spricht. Das wären 1,6 Watt, was in der Betriebs­art AM aber nur 50% der Aus­gangs­lei­stung sind. Tat­säch­lich ent­spricht damit die ein­ge­stell­te Aus­gangs­lei­stung von 1% also tat­säch­lich 3 Watt. Das ist in Ord­nung, gera­de im unte­ren Bereich ist die Ein­stel­lung der Aus­gangs­lei­stung sicher nicht sehr genau.

Der Über­sicht­lich­keit hal­ber sind die Meß­er­geb­nis­se nach­fol­gend als Gale­rie ein­ge­fügt. Klicken auf eine Mes­sung öff­net das jewei­li­ge Bild in vol­ler Auf­lö­sung in einem neu­en Tab.

Der SSA3032X-Plus kann Spek­tren auch als Was­ser­fall­dia­gramm dar­stel­len. Das ist beson­ders hilf­reich bei Signa­len mit klei­nen Pegeln. Man erkennt optisch sehr schnell, wo noch „Schmutz“ im Spek­trum ist.

SSA3032X-Plus, Quelle: IC7300, Center: 10.125 MHz, Modulation: 2kHz@15%, Span: 5 kHz, RBW: 3 Hz, Spectrum display
SSA3032X-Plus, Quel­le: IC7300, Cen­ter: 10.125 MHz, Modu­la­ti­on: 2kHz@15%, Span: 5 kHz, RBW: 3 Hz, Spec­trum display

Die­se Mes­sung zeigt das mit 2 kHz sehr schwach AM-modu­lier­te Signal. Man erkennt deut­lich die Sei­ten­bän­der im Abstand von 2 kHz, aber auch win­zi­ge Sei­ten­band­si­gna­le um den Trä­ger her­um. In der Dar­stel­lung des Spek­trums wür­de man sie wahr­schein­lich als unkor­re­lier­tes Pha­sen­rau­schen übersehen.

Abschlie­ßend noch das Breit­band­spek­trum zwi­schen 1 MHz und 40 MHz:

Bei­de Gerä­te erken­nen neben dem Trä­ger auch die zwei­te und drit­te Ober­wel­le. Es gibt eine Dis­kre­panz über die jewei­li­gen Pegel, was mut­maß­lich der rela­tiv hohen Auf­lö­sungs­band­brei­te von 1 kHz geschul­det ist. Beson­ders beim Rigol füh­ren gerin­ge Auf­lö­sungs­band­brei­ten aber zu sehr lan­gen Meß­zei­ten, was ich hier ver­mei­den wollte.

Außer­dem fällt auf, daß der Rausch­pe­gel unter­halb von etwa 18 MHz um 10 bis 15 dB erhöht ist. Das ist mut­maß­lich auf ein Aus­gangs­fil­ter im IC-7300 zurückzuführen.

Zusam­men­fas­sung

Im Ver­gleich zur vor­he­ri­gen Gene­ra­ti­on, zu der ich den Rigol DSA815-TG zäh­le, haben die Sig­lent SSA3000X Spek­trum­ana­ly­sa­to­ren erheb­li­che Fort­schrit­te gemacht. Die Bild­schirm­auf­lö­sung ist von 800×460 Pixeln und 8″ Dis­play auf 1024×600 Pixel und ein 10.1″ Touch-Dis­play gestie­gen, die Meß­ge­schwin­dig­keit wur­de durch die ein­ge­bau­te FFT enorm erhöht und die Auf­lö­sungs­band­brei­te wur­de auf 1 Hz redu­ziert. Gleich­zei­tig wur­de das Pha­sen­rau­schen um min­de­stens 15 dB redu­ziert, beim Rigol waren es ‑80 dBc/Hz, beim Sig­lent ‑95 dBc/Hz, jeweils im 10 kHz Abstand.

Ein nicht leicht zu ver­dau­en­der Wehr­muts­trop­fen ist die oben gezeig­te min­de­stens 10 dB Rau­sch­über­hö­hung im Abstand von +/- 50 kHz zum Trä­ger. Das mag für die eine oder ande­re Anwen­dung ein K.O.-Kriterium sein. Ich den­ke aber, daß sich in der Preis­klas­se zur Zeit nichts bes­se­res fin­den lässt. Wenn man das Ver­hal­ten kennt, wird man damit leben kön­nen, zumal der Effekt gerin­ger wird, wenn der Trä­ger aus dem Sicht­feld bewegt wird.

Trotz der oben beschrie­be­nen Schwä­che wür­de ich den SSA3032X Plus, bzw. einen sei­ner Geschwi­ster, den SSA3015X Plus, SSA3021X Plus oder gar den SSA3075X Plus empfehlen.

Vor­schau auf Teil 2

Im näch­sten Teil wer­de ich eini­ge Mes­sun­gen mit den ein­ge­bau­ten Track­ing­ge­ne­ra­to­ren zei­gen. In der Bastel­ki­ste fin­den sich ein paar gefrä­ste Fil­ter­schal­tun­gen, z.B. ein 1,4 GHz Strei­fen­lei­tungs­fil­ter und ein 800 MHz Band­paß­fil­ter. Bei­de Fil­ter wur­den mit dem Ansoft Desi­gner SV2 ent­wor­fen und auf FR‑4 Basis­ma­te­ri­al gefräst. Auch ein Fil­ter mit ein­ge­bau­tem MMIC Ver­stär­ker soll­te für Bei­spiel­mes­sun­gen ver­wend­bar sein.

Mit einer eben­falls auf FR‑4 gefrä­sten 23 cm Patch-Anten­ne und einem exter­nen Richt­kopp­ler wer­de ich Refle­xi­ons­mes­sun­gen durchführen.

Hier die Links zu Teil 2 und Teil 3.